首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Aχ=0的基础解系,若存在ηi使Aηi=ξi,i=1,2,…,t,证明向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Aχ=0的基础解系,若存在ηi使Aηi=ξi,i=1,2,…,t,证明向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
admin
2018-06-12
93
问题
设A是n阶矩阵,ξ
1
,ξ
2
,…,ξ
t
是齐次方程组Aχ=0的基础解系,若存在η
i
使Aη
i
=ξ
i
,i=1,2,…,t,证明向量组ξ
1
,ξ
2
,…,ξ
t
,η
1
,η
2
,…,η
t
线性无关.
选项
答案
如果k
1
ξ
1
+k
2
ξ
2
+…+k
t
ξ
t
+l
1
η
1
+l
2
η
2
+…+l
t
η
t
=0, ① 用A左乘上式,并把Aξ
i
=0,Aη
i
=ξ
i
,i=1,2,…,t代入,得 l
1
ξ
1
+l
2
ξ
2
+…l
t
ξ
t
=0. ② 因为ξ
1
,ξ
2
,…,ξ
t
是Aχ=0的基础解系,它们线性无关,故对②必有 l
1
=0,l
2
=0,…,l
t
=0. 代入①式,有k
1
ξ
1
+k
2
ξ
2
+…+k
t
ξ
t
=0. 所以必有k
1
=0,k
2
=0,…,k
t
=0. 即向量组ξ
1
,ξ
2
,…,ξ
t
,η
1
,η
2
,…,η
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/BUg4777K
0
考研数学一
相关试题推荐
设矩阵A的伴随矩阵A*=,且ABA-1=BA-1+3E,其中E为4阶单位矩阵,求矩阵B.
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
设A是3阶矩阵,α1,α2,α3都是3维非零列向量,满足Aαi=iαi,(i=1,2,3).记α=α1+α2+α3.①证明α,Aα,A2α线性无关.②设P=(α,Aα,A2α),求P-1AP.
设函数f(x)=,证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+o(x2),并求常数A,B.
设在平面区域D上数量场u(x,y)=50-x2-4y2,试问在点P0(1,-2)∈D处沿什么方向时u(x,y)升高最快,并求一条路径,使从点P0(1,-2)处出发沿这条路径u(x,y)升高最快.
求曲线y=ex上的最大曲率及其曲率圆方程.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0,写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
设X,Y为随机变量,且E(X)=1,E(Y)=2,D(X)=4,D(Y)=9,ρXY=一,用切比雪夫不等式估计P{|X+Y一3|≥10}.
设f(x)在x=0的邻域内二阶连续可导,=2,求曲线y=f(x)在点(0,f(0))处的曲率.
随机试题
人体内存在超标准的铅(100μg/L),主要原因是焊接、印刷、油漆作业及(),经呼吸、口进入体内。
患者,男,17岁。半小时前因跳马比赛不慎颈部受伤,初步检查:患者可主动做肩前屈、肘屈运动,但不能主动做肘伸运动,双下肢软瘫。(2008年第119题)急诊入院后,颈椎X线片未见骨折脱位,最适宜的处理是
消化性溃疡行手术治疗的适应证
25岁妇女,主诉白带多伴外阴痒。检查见外阴皮肤有抓痕,窥器检查后穹隆处有多量稀薄的白色泡沫分泌物,阴道粘膜有多个散在的红色斑点。
中国药典的凡例部分
基金托管人对基金管理人投资运作实行监督,其主要方式不包括()。
甲、乙、丙、丁四人拟设立一家普通合伙企业,其书面合伙协议中约定以下内容:(1)甲以劳务出资;乙和丙以现金出资;丁以房产使用权出资;(2)合伙企业的事务由乙全权负责,甲、丙、丁不得过问企业事务,也不承担企业亏损的民事责任;(3)合伙企业存续期间经全体合
在微程序控制方式中,机器指令、微程序和微指令的关系是()。
Givenherdedicationandcompetence,Iam______thatMs.Williamswillbeavaluableassettoyourcompany.
Fewcreaturesonearthareascuteastheblackliontamarin,andfewhaveasdramaticastoryline.Pug-nosedanddiminutive,w
最新回复
(
0
)