首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Aχ=0的基础解系,若存在ηi使Aηi=ξi,i=1,2,…,t,证明向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Aχ=0的基础解系,若存在ηi使Aηi=ξi,i=1,2,…,t,证明向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
admin
2018-06-12
80
问题
设A是n阶矩阵,ξ
1
,ξ
2
,…,ξ
t
是齐次方程组Aχ=0的基础解系,若存在η
i
使Aη
i
=ξ
i
,i=1,2,…,t,证明向量组ξ
1
,ξ
2
,…,ξ
t
,η
1
,η
2
,…,η
t
线性无关.
选项
答案
如果k
1
ξ
1
+k
2
ξ
2
+…+k
t
ξ
t
+l
1
η
1
+l
2
η
2
+…+l
t
η
t
=0, ① 用A左乘上式,并把Aξ
i
=0,Aη
i
=ξ
i
,i=1,2,…,t代入,得 l
1
ξ
1
+l
2
ξ
2
+…l
t
ξ
t
=0. ② 因为ξ
1
,ξ
2
,…,ξ
t
是Aχ=0的基础解系,它们线性无关,故对②必有 l
1
=0,l
2
=0,…,l
t
=0. 代入①式,有k
1
ξ
1
+k
2
ξ
2
+…+k
t
ξ
t
=0. 所以必有k
1
=0,k
2
=0,…,k
t
=0. 即向量组ξ
1
,ξ
2
,…,ξ
t
,η
1
,η
2
,…,η
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/BUg4777K
0
考研数学一
相关试题推荐
设A为3阶方阵,A*为A的伴随矩阵,|A|=,则|4A-(3A*)-1|=()
设有向量组A:及向量b=,问α,β为何值时:(1)向量b能由向量组A线性表示,且表示式唯一;(2)向量b不能由向量组A线性表示;(3)向量b能由向量组A线性表示,且表示式不唯一,并求一般表达式.
设A=(1)计算行列式|A|(2)当实数a为何值时,方程组Aχ=β有无穷多解,并求其通解.
已知矩阵A=有特征值λ=5,求a的值;并当a>0时,求正交矩阵Q,使Q-1AQ=∧.
设A为m×n矩阵,B为n×m矩阵,若AB=E,则()
设F(χ,y)在点(χ0,y0)某邻域有连续的偏导数,F(χ0,y0)=0,则F′y(χ0,y0)≠0是F(χ,y)=0在点(χ0,y0)某邻域能确定一个连续函数y=y(χ),它满足y0=y(χ0),并有连续的导数的_______条件.
方程组的通解是________
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
计算曲线积分I=,其中L是以点(1,0)为中心,R为半径的圆周(R≠1),取逆时针方向.
求方程y″+2my′+n2y=0的通解;又设y=y(x)是满足y(0)=a,y′(0)=b的特解,求y(x)dx,其中m>n>0,a,b为常数.
随机试题
Youdon’thavetherighttoblameme______beinglate,forIwasbusytypingyourbusinessinvitations.
子宫内膜异位症临床分期的依据是
初产妇,孕37+4周,宫缩每3分钟1次,每次持续30秒,检查:宫口开大2cm,先露平坐骨棘平面,已破膜,羊水Ⅲ度,胎监显示缩宫素激惹试验(OCT)阳性。新生儿出生后,Apgar评分为4分,助产护士首选的措施是
测绘标准包括()。
某大厦内甲、乙、丙三个公司对大厦的一部电梯拥有共同产权,其中甲公司占50%,乙公司占30%,丙公司占20%。三个公司共同委托大厦物业管理方丁公司负责管理梯,电梯主要由丙公司日常使用。依据《特种设备安全法》,影响特种设备检验机构提出定期检验申请的单位是(
挖孔桩基础施工时,若发现桩间距比较大、地层紧密,不需要爆破时,可以采用()。
职业生涯规划使用的程序可以围绕以下方面展开()。
桌厂生产甲产品经两道工序制成,其在产品资料如下:原材料在开始生产时一次投入;当月完工入库甲产品50件,甲产品单件工时定额800小时,其中,第一道工序工时定额480小时,第二道工序工时定额320小时。第一道工序在产品结存40件,第二道工序在产品结存50件。甲
1914—1918年中国民族工业得到发展的原因有()。①辛亥革命冲击封建制度②清政府允许民间办厂③北洋军阀分裂④帝国主义忙于一战,暂时放松对华经济掠夺
Thewaysinwhichsocietiesaddressenvironmentalissuesareinthemidstofaprofoundtransformation.Boththeextentofthis
最新回复
(
0
)