首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
admin
2016-05-09
62
问题
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量b
T
,使A=ab
T
.
选项
答案
充分性:设a=(a
1
,a
2
,…,a
m
)
T
,b=(b
1
,b
2
,…,b
m
)
T
,设a
1
b
1
≠0,根据矩阵秩的性质r(AB)≤min{r(A),r(B)},因为A=ab
T
,所以r(A)≤r(a)=1. 另一方面,根据假设a
1
b
1
≠0可知,A的第一行第一列的元素a
1
b
1
≠0,所以r(A)≥1. 综上所述r(A)=1. 必要性:设A=(a
ij
)
m×n
,因r(A)=1,设a
11
≠0,由矩阵的等价可知,存在m阶可逆阵P和n阶可逆阵Q,使 [*] 其中a=[*],b=(1,0,…,0)Q,并且两者依次为非零m维列向量和非零n维行向量,且有A=ab
T
成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/zMw4777K
0
考研数学一
相关试题推荐
设f(x)有连续的导数,f(0)=0且fˊ(0)=b,若函数在x=0处连续,则常数A=_______.
[*]
以下矩阵可相似对角化的个数为()
A、 B、 C、 D、 C
设φ连续,且x2+y2+z2=
已知二次型f(x1,x2,x3)=xTAx,A是3阶实对称矩阵,满足A2-2A-3E=O,且|A|=3,则该二次型的规范形为()
以y=C1ex+C2cos2x+C3sin2x为通解的常系数齐次线性微分方程可以为()
设A是n阶矩阵,A经过初等行变换得到B,则正确的是()
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
随机试题
麻疹的传染源是:
A.急性完全性输入段梗阻B.输入段综合征C.倾倒综合征D.吻合口梗阻E.胃吻合排空障碍
安装门窗严禁采用射钉方法固定的墙是()
下列各项中,不属于银行汇票绝对应记载事项的是()。
民警罗某于2013年1月3日中午巡逻下班后开着警车回家,因无处停车,就将警车停靠在自家小区附近的禁停路段,后被某市民悄悄贴上手写的“违法行为告知书”,样式非常类似于交警开具的罚单。网民张某用照相机将这一幕拍下来,并上传到微博,引起网民热议。这份
Thecomputercanbeprogrammedto______awholevarietyoftasks.
语音构成的基本要素包括
A、 B、 C、 D、 D
県庁に行く人たちは、ちゅうしゃじょうがせまくて困っている。
Googlerecentlyintroducedanewservicethataddssocial-networkingfeaturestoitspopularGmailsystem.Theserviceiscalled
最新回复
(
0
)