首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
admin
2016-05-09
34
问题
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量b
T
,使A=ab
T
.
选项
答案
充分性:设a=(a
1
,a
2
,…,a
m
)
T
,b=(b
1
,b
2
,…,b
m
)
T
,设a
1
b
1
≠0,根据矩阵秩的性质r(AB)≤min{r(A),r(B)},因为A=ab
T
,所以r(A)≤r(a)=1. 另一方面,根据假设a
1
b
1
≠0可知,A的第一行第一列的元素a
1
b
1
≠0,所以r(A)≥1. 综上所述r(A)=1. 必要性:设A=(a
ij
)
m×n
,因r(A)=1,设a
11
≠0,由矩阵的等价可知,存在m阶可逆阵P和n阶可逆阵Q,使 [*] 其中a=[*],b=(1,0,…,0)Q,并且两者依次为非零m维列向量和非零n维行向量,且有A=ab
T
成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/zMw4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
[*]
已知函数z=u(x,y)eax+by,且,确定常数a和b,使函数z=z(x,y)满足方程,则a=,b=.
n维向量组(Ⅰ):α1,α2,…,αs和(Ⅱ):β1,β2,…,βt等价的充分必要条件是
设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=∫01f(x)dx证明:存在一点ξ∈(0,1),使得f’’(ξ)=0
设A=,其中a<0,方程组Ax=0有非零解,A*是A的伴随矩阵,则方程组A*x=0的基础解系为()
设A=,B是2阶矩阵,AB=A且B≠E,则a=________
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求正交矩阵Q
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求a,b的值
随机试题
Inrecentyears,moreandmoreforeignersareinvolvedintheteachingprogramsoftheUnitedStates.Boththeadvantagesandth
女性,45岁,自觉右颊黏膜粗糙感1个月,有时伴刺激痛。临床检查见双颊黏膜有网状白色条纹,右颊有黏膜充血该病最可能的诊断是
执业资格是指从业人员具有相应的注册执业资格证书,目前国家已实行涉及建筑业管理咨询类的主要执业资质有()。
下列选项中,不属于债权人会议行使的职权是()。
A公司自2014年底开始出现不能清偿到期债务且资产不足清偿全部债务的情况,2015年6月8日,人民法院受理了A公司的破产申请并指定某律师事务所为管理人。在该破产案件中存在下列情形:(1)管理人清理A公司库存产品时,发现仓库中存有B公司委托代销的一批产品。
下列所作的各种关于公司的分类,哪一种是以公司的信用基础为标准的分类?()
组织以外与组织有直接联系的个人、群体或组织所形成的公众群体属于()
中国共产党的第十五次代表大会提出()的目标。
若有以下程序#includemain(){inta=0,b=0,c=0,d;c=(a+=b,,b+=a);/*第4行*/d=c;;/*第5行*/;/*第6行*/;printf("%d,%d,%d\n",a,b,c);/*第7行*/}编译时
"PsychologyClass"Whatareneurotransmitters?
最新回复
(
0
)