首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
admin
2016-05-09
29
问题
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量b
T
,使A=ab
T
.
选项
答案
充分性:设a=(a
1
,a
2
,…,a
m
)
T
,b=(b
1
,b
2
,…,b
m
)
T
,设a
1
b
1
≠0,根据矩阵秩的性质r(AB)≤min{r(A),r(B)},因为A=ab
T
,所以r(A)≤r(a)=1. 另一方面,根据假设a
1
b
1
≠0可知,A的第一行第一列的元素a
1
b
1
≠0,所以r(A)≥1. 综上所述r(A)=1. 必要性:设A=(a
ij
)
m×n
,因r(A)=1,设a
11
≠0,由矩阵的等价可知,存在m阶可逆阵P和n阶可逆阵Q,使 [*] 其中a=[*],b=(1,0,…,0)Q,并且两者依次为非零m维列向量和非零n维行向量,且有A=ab
T
成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/zMw4777K
0
考研数学一
相关试题推荐
已知|A|==9,则代数余子式A21+A22=
A、 B、 C、 D、 B
已知函数z=u(x,y)eax+by,且,确定常数a和b,使函数z=z(x,y)满足方程,则a=,b=.
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求可逆矩阵P,使得PTAP=B
已知二次型f(x1,x2,x3)=xTAx,A是3阶实对称矩阵,满足A2-2A-3E=O,且|A|=3,则该二次型的规范形为()
设函数y=y(x)由方程x=dx确定,则=________
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
设A是秩为1的3阶实对称矩阵,λ1=2是A的特征值,对应特征向量为a1=(﹣1,1,1)T,则方程组Ax=0的基础解系为()
设A=,则()不是A的特征向量.
随机试题
属于氧苷的是
不属于护理理论4个基本概念的是
土工织物的隔离作用是指()。
()不能作为衡量证券投资收益水平的指标。
重大旅游安全事故,是指()。
随着时代的进步,新型的、民主的家庭气氛和父母子女关系还在形成,但随着孩子的自我意识逐渐增强,很多孩子对父母的教诲听不进或当做“耳边风”,家长感到家庭教育力不从心。教师应该()。
(1)开庭(2)拘捕(3)起诉(4)杀人(5)判处死刑
深圳一公务员对从湖南赶来照顾媳妇和孙子的父母实施家庭暴力,引起社会关注,请问你怎么看待?(2011年11月6日浙江省基层政法干警面试真题)
下列不能用作存储容量单位的是()。
KeepOurSeasCleanA)Bytheyear2050itisestimatedthattheworld’spopulationcouldhaveincreasedtoaround12billio
最新回复
(
0
)