首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
admin
2016-05-09
70
问题
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量b
T
,使A=ab
T
.
选项
答案
充分性:设a=(a
1
,a
2
,…,a
m
)
T
,b=(b
1
,b
2
,…,b
m
)
T
,设a
1
b
1
≠0,根据矩阵秩的性质r(AB)≤min{r(A),r(B)},因为A=ab
T
,所以r(A)≤r(a)=1. 另一方面,根据假设a
1
b
1
≠0可知,A的第一行第一列的元素a
1
b
1
≠0,所以r(A)≥1. 综上所述r(A)=1. 必要性:设A=(a
ij
)
m×n
,因r(A)=1,设a
11
≠0,由矩阵的等价可知,存在m阶可逆阵P和n阶可逆阵Q,使 [*] 其中a=[*],b=(1,0,…,0)Q,并且两者依次为非零m维列向量和非零n维行向量,且有A=ab
T
成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/zMw4777K
0
考研数学一
相关试题推荐
设,f具有连续二阶偏导数,则
A、 B、 C、 D、 B
以下矩阵可相似对角化的个数为()
n维向量组(Ⅰ):α1,α2,…,αs和(Ⅱ):β1,β2,…,βt等价的充分必要条件是
设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=∫01f(x)dx证明:存在一点ξ∈(0,1),使得f’’(ξ)=0
已知二次型f(x1,x2,x3)=xTAx,A是3阶实对称矩阵,满足A2-2A-3E=O,且|A|=3,则该二次型的规范形为()
设a,Aa,A2a线性无关,且3Aa-2A2a-A3a=0,其中A为3阶矩阵,a为3维列向量记P=(a,Aa,A2a),求3阶矩阵B,使得P-1AP-B,并计算行列式|A+E|
设A为n阶实对称矩阵,且A2A=A,r(A)=r(0<r<n),则行列式|A-2E|=________
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求a,b的值
设A是秩为1的3阶实对称矩阵,λ1=2是A的特征值,对应特征向量为a1=(﹣1,1,1)T,则方程组Ax=0的基础解系为()
随机试题
微波天线的口面越大,增益越高,那么是不是天线越大越好呢?
与延髓相连的脑神经有()
不属于心理社会因素的是
市场在社会经济活动中的基础性作用表现在()。
物资供应计划按内容和用途分类的是()。
下列关于材料采购合同交货期限相关事项的表述,不正确的是()。
【背景资料】某机电安装公司通过招标承担了某小区采暖锅炉及辅助设备安装工程,在进行分项工程质量验收时,有下列事件发生:事件一:锅炉本体已安装完毕,但钢骨架因施工过程中保护不够造成局部垂直度超差。事件二:与锅炉本体连接的主干管上,
智力测验的初衷及价值——1992年英译汉及详解Intelligenceatbestisanassumptiveconstruct—themeaningofthewordhasneverbeenclear.【F1】There
对于下列关于TCP的说法,错误的一项是()。
Afterworkingforthecompanyforyears,he______thepositionofmanager.
最新回复
(
0
)