首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3都是3维非零列向量,满足Aαi=iαi,(i=1,2,3).记α=α1+α2+α3. ①证明α,Aα,A2α线性无关. ②设P=(α,Aα,A2α),求P-1AP.
设A是3阶矩阵,α1,α2,α3都是3维非零列向量,满足Aαi=iαi,(i=1,2,3).记α=α1+α2+α3. ①证明α,Aα,A2α线性无关. ②设P=(α,Aα,A2α),求P-1AP.
admin
2016-07-20
46
问题
设A是3阶矩阵,α
1
,α
2
,α
3
都是3维非零列向量,满足Aα
i
=iα
i
,(i=1,2,3).记α=α
1
+α
2
+α
3
.
①证明α,Aα,A
2
α线性无关.
②设P=(α,Aα,A
2
α),求P
-1
AP.
选项
答案
条件说明α
1
,α
2
,α
3
都是A的特征向量,特征值依次为1,2,3,因此α
1
,α
2
,α
3
线性无关 ①α=α
1
+α
2
+α
3
,Aα=α
1
+2α
2
+3α
3
,A
2
α=α
1
+4α
2
+9α
3
,用矩阵分解,矩阵 P=(α,A
2
α,A2α)=(α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
) =(α
1
,α
2
,α
3
)[*] [*]的行列式为2,因此是可逆矩阵.于是 r(α,Aα,A
2
α)=r(P)=r(α
1
,α
2
,α
3
)=3,α,Aα,A
2
α线性无关. ②记P
-1
AB=B,则AP=PB,即 (Aα,A
2
α,A
3
α)=(α,Aα,A
2
α)B. 于是B是向量组Aα,A
2
α,A
3
α对α,Aα,A
2
α的表示矩阵.显然其第1,2两列分别为(0,1,0)
T
和(0,0,1)
T
.第3列是A
3
α对α,Aα,A
2
α的表示系数,设为c
1
,c
2
,c
3
,则 P(c
1
,c
2
,c
3
)
T
=A
3
α, 注意A
3
α=α
1
+8α
2
+27α
3
,于是 [*] 因为(α
1
,α
2
,α
3
)是可逆矩阵,所以有 [*] 用初等变换法求得c
1
=6,c
2
=-11,c
3
=6,于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/40w4777K
0
考研数学一
相关试题推荐
以y=C1ex+C2cos2x+C3sin2x为通解的常系数齐次线性微分方程可以为()
设an=|sinnx|dx(n>),则=()
设A是n阶矩阵,A经过初等行变换得到B,则正确的是()
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
设3阶矩阵A相似于diag(1,2,3),且B=(A-E)(A-2E)(A-3E),则r(B)=
设∫xx+f(x)=tetdt,则a=________
设向量组(Ⅰ):a1,a2,a3;(Ⅱ):a1,a2,a4的秩分别为秩(Ⅰ)=2,秩(Ⅱ)=3.证明:向量组a1,a2,a3+a4的秩等于3.
在曲线L:上求一点(x,y,z),使得u(x,y,z)=xyz分别为最大、最小值,并求出此最大、最小值.
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
随机试题
为什么说对新闻媒介来说,出售新闻与出售广告同等重要?
肿瘤特异性抗原的特点不包括
ANA(抗核抗体)的性质主要是
男性,60岁,咳嗽、乏力、无痰2个月,曾予青霉素80万U肌注,2次/天,5天,口服止咳、祛痰药无效。查体:左外侧胸第4、5肋间语颤减低,叩诊浊音,杵状指(+),白细胞8.7x109/L,中性粒细胞69%,痰中见到肿瘤细胞。最可能的诊断是
口腔癌性变表现型不包括
一元非线性回归可以通过坐标变换转化成线性回归问题来处理。()
有关河流描述不正确的是()。
中国共产党人在新中国成立初期,因为没有经验,在经济建设上只能学习甚至照搬苏联的做法。1956年4月,毛泽东所作的()的报告,是中国共产党人开始探索中国自己的社会主义建设道路的标志。
()决定计算机的运算精度。
《老子》的整个思想都是围绕着中心概念“道”而展开的,然而《老子》的七十三个“道”字,虽然符号形式统一,却有不同的意义。有的地方“道”是指世界存在的根源,有的地方“道”是指一种规律,有的地方“道”是指人生的一种准则,这反映出“道”一统的人生观。老子所说的“道
最新回复
(
0
)