首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设,Q为三阶非零矩阵,且PQ=Q,则( )。
设,Q为三阶非零矩阵,且PQ=Q,则( )。
admin
2021-11-25
31
问题
设
,Q为三阶非零矩阵,且PQ=Q,则( )。
选项
A、当t=6时,r(Q)=1
B、当t=6时,r(Q)=2
C、当t≠6时,r(Q)=1
D、当t≠6时,r(Q)=2
答案
C
解析
因为Q≠O,所以r(Q)≥1,又由PQ=O得r(P)+r(Q)≤3,当t≠6时,r(P)≥2,则r(Q)≤1,于是r(Q)=1,选C.
转载请注明原文地址:https://kaotiyun.com/show/BZy4777K
0
考研数学二
相关试题推荐
设函数f(x)在(0,﹢∞)内可导,f(x)﹥0,f(π/2)=x∈(0,﹢∞)。求:(Ⅰ)f(x);(Ⅱ)定义数列xn=0nπf(t)dt,证明数列{xn}收敛。
方程y’’’-y’’-y’+y=6e﹣x-3ex+1的特解形式(a,b,c是常数)为()
设f(x)在(﹣∞,﹢∞)连续,且F(x)=,证明:(Ⅰ)F(x)在(﹣∞,﹢∞)内具有连续的导数;(Ⅱ)若f(x)在(﹣∞,﹢∞)内单调递增,则F(x)在(﹣∞,0]内单调递增,在(0,﹢∞)内单调递减。
设微分方程=2y-x,在它的所有解中求一个解y=y(x),使该曲线y=y(x)与直线x=1,x=2及x轴围成的图形绕x轴旋转一周所生成的旋转体体积最小.
设4维向量组a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其
设曲线的极坐标方程为r=eθ,则处的法线的直角坐标方程是________.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3α一2A2α.证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆;(Ⅱ)BTB是正定矩阵.
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),则至少存在一点ξ∈(1,3),使得φ"(ξ)<0。
设y(x)是初值问题的解,则∫0+∞xyˊ(x)dx=()
(1)设n元实二次型f(x1,x2,…,x3)=xTAx,其中A又特征值λ1,λ2,…,λn,且满足λ1≤λ2≤…≤λn.证明对任何n维列向量x,有λ1xTx≤λ2xTx≤…≤λnxTx.(2)设f(x1,x2,x3)=(x1,x2,x3)=xTAx
随机试题
4岁小儿,全身高度水肿,确诊为肾病综合征。
最近对邓小平全球战略思维的实践有()
对于转移性肝癌的描述,不正确的是
一氧化碳中毒造成患者缺氧的主要原因为
只有中央结算公司负责依据中国人民银行有关买断式回购的规定制定相应的买断式回购业务的交易、结算规则。()
位于市区的某制药公司由外商持股75%且为增值税一般纳税人,该公司2015年主营业务收入5500万元,其他业务收入400万元,营业外收入300万元,主营业务成本2800万元,其他业务成本300万元,营业外支出210万元,营业税金及附加420万元,管理费用55
中国人民银行对商业银行的监督管理不包括()。
简述二战后当代资本主义的新变化。
以下选项中正确的语句组是
Mydeputyhasresigned,soIhavealot______mymindjustnow.
最新回复
(
0
)