首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
齐次线性方程组Ax=0的系数矩阵A4×5(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵 A=(α1,α2,α3,α4,α5)→ 则( )
齐次线性方程组Ax=0的系数矩阵A4×5(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵 A=(α1,α2,α3,α4,α5)→ 则( )
admin
2020-03-01
54
问题
齐次线性方程组Ax=0的系数矩阵A
4×5
(α
1
,α
2
,α
3
,α
4
,α
5
)经初等行变换化为阶梯形矩阵
A=(α
1
,α
2
,α
3
,α
4
,α
5
)→
则( )
选项
A、α
1
不能由α
2
,α
3
,α
4
线性表示。
B、α
2
不能由α
3
,α
4
,α
5
线性表示。
C、α
3
不能由α
1
,α
2
,α
4
线性表示。
D、α
4
不能由α
1
,α
2
,α
3
线性表示。
答案
D
解析
对于选项A,考虑非齐次线性方程组x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
。由已知条件可知r(α
2
,α
3
,α
4
)=r(α
2
,α
3
,α
4
,α
1
)=3,所以α
1
必可由α
2
,α
3
,α
4
线性表示。
类似可判断选项B和C也不正确,只有选项D正确。
实际上,由r(α
1
,α
2
,α
3
)=2,r(α
1
,α
2
,α
3
,α
4
)=3可知,α
4
不能由α
1
,α
2
,α
3
线性表示。故选D。
转载请注明原文地址:https://kaotiyun.com/show/ijA4777K
0
考研数学二
相关试题推荐
设函数y=y(x)是微分方程一2y=0的解,且在x=0处y(x)取得极值3,则y(x)=___________.
(91年)曲线y=的上凸区间是=______.
(11年)已知当x→0时,函数f(x)=3sinx—sin3x与cxk是等价无穷小,则
已知向量组(Ⅰ)α1=,若向量组(Ⅰ)和向量组(Ⅱ)等价,求a的取值,并将β3用α1,α2,α3线性表示.
若α1,α2,α3线性无关,那么下列线性相关的向量组是
设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=().
设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则().
设f(x)在x=a的邻域内有定义,且f’+(a)与f’-(a)都存在,则().
设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是()
设有微分方程y′-2y=φ(χ),其中φ(χ)=试求在(-∞,+∞)内的连续函数为_______,y=y(χ),使之在(-∞,1),(1,+∞)内都满足所给方程,且满足条件y(0)=0.
随机试题
A.胸锁乳突肌后缘中点B.锁骨中1/3段上方C.锁骨内侧1/3段上方,距锁骨2~3cmD.下颌角至锁骨中点的连线E自乳突尖与下颌角连线的中点至胸锁乳突肌中点颈外静脉的体表投影
下列各类药物中,性属沉降的是
某一具有多功能的综合性建筑地处繁华闹市,五层裙楼分东西两部分,东部是一独立的银行办公区域,金库设在地下一层,一层有大堂、保险箱房、总出纳室、营业柜台以及无人值守的24h存、取款自助银行等。西部一层有酒店的大堂、商务中心、游泳馆、酒吧等,2~5层为餐饮、娱乐
隧道施工监控量测的目的包括()。
建设工程项目决策阶段的主要任务是()
某月30d,绞吸挖泥船完成工程量20万m3,该船时间利用率60%,已知该船排泥管径为0.6m,泥浆浓度10%。问题:计算该船生产率;
下列关于个人住房商业贷款抵押贷款方式的说法准确的是( )。
建设工程监理规范是指()。
某市区木业制造企业(增值税一般纳税人),主要以木材加工木制品,2010年9月发生以下业务:(1)自林场购进原木一批,农产品收购发票注明价款128万元;委托某运输公司负责运输,支付运费8.9万元,取得运费发票;(2)将购进原木部分制成高档桌椅
与广域网相比,局域网具有下列哪一个特征()。
最新回复
(
0
)