首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上可导,f(0)=0,且存在常数k>0,使得|f’(x)|≤k|f(x)|在[0,+∞)上成立,则在(0,+∞)上( )。
设f(x)在[0,+∞)上可导,f(0)=0,且存在常数k>0,使得|f’(x)|≤k|f(x)|在[0,+∞)上成立,则在(0,+∞)上( )。
admin
2021-07-15
7
问题
设f(x)在[0,+∞)上可导,f(0)=0,且存在常数k>0,使得|f’(x)|≤k|f(x)|在[0,+∞)上成立,则在(0,+∞)上( )。
选项
A、仅当0<k<1时,f(x)恒为零
B、仅当k>1时,f(x)横不为零
C、当k=1时,f(x)不恒为零
D、k为任意正常数时,f(x)均恒为零
答案
D
解析
设x
0
∈
,使得|f(x
0
|是|f(x)|在
上的最大值,由拉格朗日中值定理,
f(x
0
)-f(0)=f’(ξ)(x
0
-0),其中ξ∈(0,x
0
)
,即
|f(x
0
)|=|f(0)+f’(ξ)x
0
|=|f’(ξ)|x
0
≤k|f(ξ)|
≤k|f(x
0
)|·
|f(x
0
)|
故|f(x
0
)|=0,由此可知,0≤|f(x)|≤|f(x
0
)|≤0,也即当x∈
时,f(x)恒为零。
同理,设x
1
∈
,使得|f(x
1
)|是|f(x)|在
上的最大值,由拉格朗日中值定理,
f(x
1
)-
=f’(ξ
1
)(x
1
-
),ξ
1
∈(
,x
1
)
=0,即
|f(x
1
)|=|
+f’(ξ
1
)(x
1
-
)|=|f’(ξ
1
)|·(x
1
-
)≤k·|f(x
1
|·
|f(x
1
)|,
故|f(x
1
|=0,也即当x∈
时,f(x)亦恒为零,依此递推下去,对x∈
,n-1,2,....,均有f(x)恒为零,故选D.
转载请注明原文地址:https://kaotiyun.com/show/Bhy4777K
0
考研数学二
相关试题推荐
[*]
设ξ1(1,-2,3,2)T,ξ2(2,0,5,-2)T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是()
设函数F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y22+y22
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ)。
判断下列广义积分的敛散性:
设常数k>0,函数在(0,+∞)内零点个数为()
计算积分
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
设数列极限函数则f(x)的定义域,和f(x)的连续区间J分别是()
随机试题
设向量组α1,α2,…,αs为齐次线性方程组Ax=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
惩戒委员会应当集体作出决定,决定由出席会议委员的_______以上多数通过,并作出决定书。
背景资料某机电设备安装公司经招标投标,获得某厂生产线的机电设备安装工程,并与业主签订了施工合同。合同规定工程范围、工期、质量标准、安全环境要求。其中质量标准和要求按部颁标准执行,主要材料如钢材、电缆、ф50以上的管道阀门等由业主提供,安装现场的协
20世纪50年代至70年代的创业投资基金为经典的()创业投资基金。
甲公司是一家能源类上市公司,当年取得的利润在下年分配。2018年公司净利润10000万元。2019年分配现金股利3000万元,预计2019年净利润12000万元。2020年只投资一个新项目,总投资额8000万元。要求:如果甲公司采用低正常股利
下列关于职业判断的说法中,正确的是()。
以下关于中国政党制度的表述不正确的是()。
地位量数包括哪些类型?
The(long)______oftheriveris3,000miles.
It’snosecretweareacultureconsumedbyimage.Economistshavelongrecognizedwhat’sbeendubbedthe"beautypremium"—thei
最新回复
(
0
)