首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶不可逆矩阵,α1,α2是Ax=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
设A是3阶不可逆矩阵,α1,α2是Ax=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
admin
2018-06-27
51
问题
设A是3阶不可逆矩阵,α
1
,α
2
是Ax=0的基础解系,α
3
是属于特征值λ=1的特征向量,下列不是A的特征向量的是
选项
A、α
1
+3α
2
.
B、α
1
-α
2
.
C、α
1
+α
3
.
D、2α
3
.
答案
C
解析
Aα
1
=0,Aα
2
=0,Aα
3
=α
3
.则A(α
1
+3α
2
)=0,A(α
1
-α
2
)=0,A(2α
3
)=2α
3
.
因此(A),(B),(D)都正确.
A(α
1
+α
3
)=α
3
,和α
1
+α
3
不相关,因此α
1
+α
3
不是特征向量,故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/Bik4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,…αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+α1,线性无关.
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是
求连续函数f(x),使它满足f(x)+2∫0xf(t)dt=x2.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分|sinx|arct
设z=z(x,y)是由9x2一54xy+90y2一6yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值.
从抛物线y=x2一1的任意一点P(t,t2—1)引抛物线y=x2的两条切线,证明该两条切线与抛物线y=x2所围面积为常数.
已知矩阵若A+kE正定,求k的取值.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
微分方程的通解是y=________.
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
随机试题
关于青春期龈炎,下列描述错误的是
口服药物流产适用于利凡诺引产术适用于
在发生经济业务时,单式记账法只在一个账户中登记,复式记账法则在两个账户中登记。()
“易拉罐的用途:可以做成花蓝,可以改造成烟灰缸,可以做成铲土的小铲子”,这属于训练发散思维中的()。
可视电话:液晶电视
TrafficisaperennialprobleminHongKong.Overtheyearsmanysuggestionshavebeen【C1】______toeasetransportdifficulties.
0
哈希表的平均查找长度和(39)无直接关系。
若执行下述程序时,若从键盘输入6和8,结果为()。main(){inta,b,s;scanf(“%d%d”,&a,&b);s=a:if(s=b)s*=s:
以下对C语言函数的叙述中正确的是()。
最新回复
(
0
)