首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布.首先开动其中一台,当其发生故障时停用,而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布.首先开动其中一台,当其发生故障时停用,而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
admin
2019-05-08
31
问题
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布.首先开动其中一台,当其发生故障时停用,而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
选项
答案
解一 设T的分布函数为F(t),则F(t)=P(T≤t).又设第i台记录仪无故障工作的时间为X
i
(i=1,2),则T=X
1
+X
2
是X
1
,X
2
的函数.为求f(t),需先根据分布函数的定义求出F(t).因X
1
,X
2
相互独立,且同服从于参数为5的指数分布,由 [*] 得到 [*] 当t>0时,有 [*] 当t<0时,F(t)=P(T≤t)=0.综上所述,得到 [*] 则 [*] 因X
i
服从参数λ=5的指数分布,则 E(X
i
)=1/5,D(X
i
)=1/25(i=1,2). E(T)=E(X
1
+X
2
)=E(X
1
)+E(X
2
)=2/5, 又X
1
与X
2
独立,故D(T)=D(X
1
+X
2
)W=D(X
1
)+D(X
2
)=2/25. 解二 用卷积公式求之. [*] 而 [*] 当t≤0时,因积分中x
1
≥0,故t-x
1
≤0,所以f
X
1
(t-x
1
)=0.则f(t)=0. 当t>0时,若t>x
1
>0,则[*]故 [*] 下同解一(略).
解析
转载请注明原文地址:https://kaotiyun.com/show/BoJ4777K
0
考研数学三
相关试题推荐
求微分方程x2y’+xy=y2满足初始条件y(1)=1的特解.
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
已知二维随机变量(X,Y)的概率密度为(Ⅰ)试求(X,Y)的边缘概率密度fX(x),fY(y),并问X与Y是否独立;(Ⅱ)令Z=X—Y,求Z的分布函数FZ(y)(z)与概率密度fZ(y)(z)。
已知(x,y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX|Y(x|y),fY|X(y|x);并问X与Y是否独立;
设随机变量X的概率密度为求随机变量Y=eX的概率密度fY(y)。
袋中有a个白球与b个黑球。每次从袋中任取一个球,取出的球不再放回去,求第二次取出的球与第一次取出的球颜色相同的概率。
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是________。
设相互独立的两随机变量X与Y均服从分布B(1,),则P{X≤2Y}=()
已知随机变量X的概率密度(Ⅰ)求分布函数F(x)。(Ⅱ)若令Y=F(x),求Y的分布函数FY(y)。
随机试题
A公司于2015年6月在上海证券交易所上市。2019年4月,A公司聘请B证券公司作为向不特定对象公开募集股份(以下简称“增发”)的保荐人。B证券公司就本次增发编制的发行文件有关要点如下:(1)A公司最近3年的有关财务数据如下:(2)A公司于2
任免权限是指任免机关所享有的特定范围公务员职务的任免权力。在此对任免权作广义理解,包括________、________、________、________、________等。
与长期过度雌激素刺激有关的疾病是
预防奶牛生产瘫痪比较有效的方法是()。
正常人安静时,通气与血流比值为()
ABC公司2016年度的主要财务数据如下:要求:若预计2017年通货膨胀率为10%,ABC公司销量增长5%并保持2016年的经营效率和财务政策,那么需要补充多少外部融资?其中股权资金多少?负债资金多少?(计算时假设不变的营业净利率可以涵盖新增债务增
“不以分数作为评价学生的唯一标准”属于《中小学教师职业道德规范(2008年修订)》中的()。
请编写函数fun,其功能是:计算并输出下列多项式的值:例如,在主函数中从键盘给n输入50后,输出为:s=1.718282。注意:要求n的值大于1但不大于100。部分源程序在文件PROGl.C中。请勿改动主函数main
ItwasadaythatMichaelEisnerwouldundoubtedlyliketoforget.SittinginaLosAngeleswitnessboxforfourhourslastweek
A、Olderworkersquittingtheirjobs.B、Manywomencomingbacktoschoolagain.C、Economicdepressions.D、Highunemploymentrate.
最新回复
(
0
)