首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布.首先开动其中一台,当其发生故障时停用,而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布.首先开动其中一台,当其发生故障时停用,而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
admin
2019-05-08
50
问题
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布.首先开动其中一台,当其发生故障时停用,而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
选项
答案
解一 设T的分布函数为F(t),则F(t)=P(T≤t).又设第i台记录仪无故障工作的时间为X
i
(i=1,2),则T=X
1
+X
2
是X
1
,X
2
的函数.为求f(t),需先根据分布函数的定义求出F(t).因X
1
,X
2
相互独立,且同服从于参数为5的指数分布,由 [*] 得到 [*] 当t>0时,有 [*] 当t<0时,F(t)=P(T≤t)=0.综上所述,得到 [*] 则 [*] 因X
i
服从参数λ=5的指数分布,则 E(X
i
)=1/5,D(X
i
)=1/25(i=1,2). E(T)=E(X
1
+X
2
)=E(X
1
)+E(X
2
)=2/5, 又X
1
与X
2
独立,故D(T)=D(X
1
+X
2
)W=D(X
1
)+D(X
2
)=2/25. 解二 用卷积公式求之. [*] 而 [*] 当t≤0时,因积分中x
1
≥0,故t-x
1
≤0,所以f
X
1
(t-x
1
)=0.则f(t)=0. 当t>0时,若t>x
1
>0,则[*]故 [*] 下同解一(略).
解析
转载请注明原文地址:https://kaotiyun.com/show/BoJ4777K
0
考研数学三
相关试题推荐
(1)求常数m,n的值,使得=3.(2)设当x→0时,x-(a+bcosx)sinx为x的5阶无穷小,求a,b.(3)设当x→0时,f(x)=ln(1+t)dt~g(x)=xa(ebx-1),求a,b.
设f(x)为可导函数,F(x)为其原函数,则().
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
设随机变量X的概率密度为求随机变量Y=eX的概率密度fY(y)。
已知随机变量X服从参数为λ的指数分布,则P{X+Y=0}=________;P{Y≤}=________。
已知总体X的数学期望E(X)=μ,方差D(X)=σ2,X1,X2,…,Xn是取自总体X容量为2n的简单随机样本,样本均值为,统计量,求E(Y)。
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数。
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为x的指数分布,则E(XY)=________。
设随机变量X与Y均服从正态分布N(μ,σ2),则P{max(X,Y)>μ}一P{min(X,Y)<μ}=________。
随机试题
按联合国国际贸易标准,国际市场产品可分为()
若函数f(x)满足df(x)=-2xsinx2dx,则f(x)=()
在精神分析中,治疗师会潜意识恋慕或憎恨患者,称为
房地产的特性主要包含()。
下列费用中,不属于施工项目直接成本的是()。
汉语动词常常用加“了”“着”“过”等方式表示动作的态度。()
以权利和义务为内容的是()。
关系模式R(U,F),其中U=(W,X,Y,Z),F={WX→Y,W→X,X→Z,Y→W}。关系模式R的候选码是(1),(2)是无损连接并保持函数依赖的分解。
在VisualFoxPro中,假设表单上有一选项组:○男○女,该选项组的Value属性值赋为0。当其中的第一个选项按讯“男”被选中,该选项组的Value属性值为【】。
Freemedicaltreatmentinthiscountrycoverssicknessofmindaswellas_______sickness.
最新回复
(
0
)