首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵A,使得 QTAQ=A. (3)
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵A,使得 QTAQ=A. (3)
admin
2017-08-07
52
问题
设3阶实对称矩阵A的各行元素之和都为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
都是齐次线性方程组AX=0的解.
(1)求A的特征值和特征向量.
(2)求作正交矩阵Q和对角矩阵A,使得
Q
T
AQ=A.
(3)求A及[A一(3/2)E]
6
.
选项
答案
(1)条件说明A(1,1,1)
T
=(3,3,3)
T
,即α
0
=(1,1,1)
T
是A的特征向量,特征值为3.又α
1
,α
2
都是AX=0的解说明它们也都是A的特征向量,特征值为0.由于α
1
,α
2
线性无关,特征值0的重数大于1.于是A的特征值为3,0,0. 属于3的特征向量:cα
0
,c≠0. 属于0的特征向量:c
1
α
1
+c
2
α
2
c
1
,c
2
不都为0. [*] 作Q=(η
0
,η
1
,η
2
),则Q是正交矩阵,并且 [*] (3)建立矩阵方程A(α
0
,α
1
,α
2
)=(3α
0
,0,0),用初等变换法求解: [*] [A一(3/2)E]
6
=(3/2)
6
E.
解析
转载请注明原文地址:https://kaotiyun.com/show/Bor4777K
0
考研数学一
相关试题推荐
(2008年试题,18)设函数f(x)连续.(I)用定义证明F(x)可导。且F’(x)=f(x);(Ⅱ)设f(x)是周期为2的连续函数,证明也是周期为2的函数.
(2006年试题,22)设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数.求Y的概率密度fy(y);
(2008年试题,一)随机变量X,Y独立同分布且X的分布函数为f(x),则Z=max|X,Y}的分布函数为().
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解.求A的特征值与特征向量;
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵.求矩阵B.
(2003年试题,十二)设总体X的概率密度为其中θ>0是未知参数,从总体x中抽取简单随机样本X1,X2,…,Xn,记θ=min(X1,X2,…,Xn)如果用作为θ的估计量,讨论它是否具有无偏性.
(2007年试题,4)设函数f(x)在x=0处连续,下列命题错误的是()•
假设每次试验只有成功与失败两种结果,并且每次试验的成功率都是p(0
设每次试验成功的概率为,X表示首次成功需要试验的次数,则X取偶数的概率为____________.
随机试题
A.肝破裂B.脾破裂C.胰腺挫伤断裂D.十二指肠断裂E.结肠破裂间断横向缝合
AirportbaggagescreenersintheUSA,displayingseizedchainsaws,machetesandknives,【21】travelerstochecktheirluggagefor
气虚湿阻型股肿治疗宜选用
根据工业区位理论,下列描述正确的是()。
综合信息管理组的主要任务是负责本施工项目实施过程中的信息管理,其内容包括( )。项目竣工验收信息主要包括( )。
下列关于质押与抵押区别的表述中,错误的是()。
根据《民事诉讼法》的规定,当事人不服人民法院第一审判决的,有权在法定期限内向上一级人民法院提起上诉,该法定期限是指()。
最近石家庄市的大街上出现了环保型出租专用车,该车采用PLG+汽油的双燃料系统,其尾气中有害气体的成分较普通车型下降了80%左右,解决了汽车尾气排放给城市造成的污染问题。下列物质中不属于上述有害气体的是()。
设z=z(x,y)满足方程2z-ez+2xy=3且z(1,2)=0,则dz|(1,2)=_______.
ThereisgrowinginterestinEastJapanRailwayCo.ltd.,oneofthesixcompanies,createdoutoftheprivatizednationalrailw
最新回复
(
0
)