首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵A,使得 QTAQ=A. (3)
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵A,使得 QTAQ=A. (3)
admin
2017-08-07
47
问题
设3阶实对称矩阵A的各行元素之和都为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
都是齐次线性方程组AX=0的解.
(1)求A的特征值和特征向量.
(2)求作正交矩阵Q和对角矩阵A,使得
Q
T
AQ=A.
(3)求A及[A一(3/2)E]
6
.
选项
答案
(1)条件说明A(1,1,1)
T
=(3,3,3)
T
,即α
0
=(1,1,1)
T
是A的特征向量,特征值为3.又α
1
,α
2
都是AX=0的解说明它们也都是A的特征向量,特征值为0.由于α
1
,α
2
线性无关,特征值0的重数大于1.于是A的特征值为3,0,0. 属于3的特征向量:cα
0
,c≠0. 属于0的特征向量:c
1
α
1
+c
2
α
2
c
1
,c
2
不都为0. [*] 作Q=(η
0
,η
1
,η
2
),则Q是正交矩阵,并且 [*] (3)建立矩阵方程A(α
0
,α
1
,α
2
)=(3α
0
,0,0),用初等变换法求解: [*] [A一(3/2)E]
6
=(3/2)
6
E.
解析
转载请注明原文地址:https://kaotiyun.com/show/Bor4777K
0
考研数学一
相关试题推荐
(2008年试题,18)设函数f(x)连续.(I)用定义证明F(x)可导。且F’(x)=f(x);(Ⅱ)设f(x)是周期为2的连续函数,证明也是周期为2的函数.
(2011年试题,三)设随机变量X与y的概率分布本别为且P(X2=Y2)=1求Z=XY的概率分布;
(2012年试题,三)设二维离散型随机变量X、Y的概率分布为求Cov(X—Y,Y)与ρxy.
(2000年试题,一)设两个相互独立的事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=_____________.
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵.求矩阵B.
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且求A的特征值与特征向最;
(1999年试题,一)设n阶矩阵A的元素全为1,则A的n个特征值是_________________.
(1998年试题,十五)设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.附表:t分布表:P{t(n)≤t
(2008年试题,4)设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是().
设随机变量X服从参数为的指数分布,对X独立地重复观察4次,用Y表示观察值大于3的次数,求E(Y2).
随机试题
因砂石阻滞胆道,而见身目黄染,右胁疼痛,牵引肩背,或有寒热往来,大便色淡灰白,宜用何方加金钱草、鸡内金、郁金、茵陈
A.祛风清热、养血活血B.疏风解表、清热通便C.发汗解表、散风祛湿D.疏风养血、清热除湿E.疏风发表、泻下逐水消风散的功用是
患者,男,39岁。因大面积银汞合金充填要求冠修复。查:大面积银汞补,补物完好,不松动。x线牙片显示:根管治疗良好。拟为该患者行铸造全冠修复为增加铸造全冠的固位力,可采用的方法有
按规定,在35kV输电线路电压下作业时,起重臂、吊具、辅具、钢丝绳等与输电线的距离不得小于( )。
六西格玛管理工作程序DMAIC,其中D表示()。
产品成本预算的编制基础有()。
上市公司甲集团公司是ABC会计师事务所的常年审计客户,主要从事化工产品的生产和销售。A注册会计师负责审计甲集团公司2013年财务报表,确定集团财务报表整体的重要性为200万元。 资料一: 甲集团公司有一家子公司和一家联营企业,与集团审计相关的部分信息摘
对下面的汉字解说正确的一项是()。
上层建筑是建立在一定经济基础之上的意识形态以及与之相应的制度、组织和设施。以下属于上层建筑的是()
Inrecentyears,railroadshavebeencombiningwitheachyear,mergingintosupersystems,causingheightenedconcernsaboutmono
最新回复
(
0
)