首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2013-12-27
65
问题
(2007年试题,22)设3阶对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一1,且α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
由Aα=λα和A
n
α=λ
n
α,则Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=(λ
1
5
一4λ
1
3
+1)α
1
=一2α
1
故由此知,α
1
是矩阵B属于特征值μ
1
=一2的特征向量.同理可得,曰的另外两个特征值为μ
2
=μ
3
=1,设其对应的特征向量为α=(x
1
,x
2
,x
3
)
T
,则因为A是实对称矩阵,知曰也是实对称矩阵,所以有:α
1
T
α=x
1
一x
2
+x
3
=0即矩阵B属于特征值μ
2
=μ
3
=1的线性无关的特征向量可取为α
2
=(1,1,0)
T
,α
3
=(一1,0,1)
T
.故综上知:B的特征值μ
1
=一2,对应的全部特征向量为k
1
(1,一1,1)
T
,k
1
是不为零的常数,另外两个特征值μ=μ=1,对应的全部特征向量为后k
2
(1,1,0)
T
+k
3
(一1,0,1)
T
,其中k
2
,k
3
是不全为零的常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/oC54777K
0
考研数学一
相关试题推荐
设f(x)在(-∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=f(x)/x在(-∞,0)和(0,+∞)都是单调增加的.
设y=f(x)是满足微分方程y“-y‘-esinx=0的解,且f’(x0)=0,则f(x)在()
设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数.计算
已知线性方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的通解,并说明理由.
设非齐次线性方程组Ax=β的通解为x=k1(1,0,0,1)T+k2(2,1,0,1)T+(1,0,1,2)T,其中k1,k2为任意常数.A=(α1,α2,α3,α4),则()
如果F(x)是f(x)的一个原函数,G(x)是1/f(x)的一个原函数,且F(x)G(x)=-1,f(0)=1,求f(x)
证明方程在(0,+∞)内至少有两个实根.
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
设u(x,y)具有二阶连续偏导数,证明无零值的函数u(x,y)可分离变量(即u(x,y)=f(x)·g(y))的充分必要条件是
上的平均值为________.
随机试题
在我国,可以代表国家行使公诉权的只有
腹部揉面感最多见于
投资利润率是反映项目()的重要指标。
法人的权利能力与自然人的权利能力相比较,下列表述正确的是( )。
待估企业预计未来4年的预期收益率为200万元、150万元、220万元、240万元,假设本金化率15%,根据企业情况推断:①从第5年起,企业的年预期收益额将维持240万元;②从第5年起,将在第4年的基础上以4%的年增长率增长。试估测待评估企业的整体价值。
民航机场建设费是经国务院批准征收,专项用于民航机场建设的政府性基金。机场建设费的具体标准为:乘坐国内支线航班为每人()元人民币。
沪剧是源于浦东的民歌的地方戏。()
写作的艺术是比写作艺术的本身或写作技巧的艺术更广泛的。事实上,如果你能告诉一个希望成为作家的初学者,第一步不要过分关心写作的技巧,叫他不要在这种肤浅的问题上空费工夫,劝他表露他的灵魂的深处,以冀创造一个为作家基础的真正的文学性格;如果你这样做,你对他将有很
YouaretheadministratorofaSQLServer2000computer.TheservercontainsadatabasenamedSales.Thedatabasewillstoresal
"Piaget’sCognitiveDevelopmentTheory"ThefamousSwisspsychologistJeanPiaget(1896-1980)proposedanimportanttheoryo
最新回复
(
0
)