首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2013-12-27
49
问题
(2007年试题,22)设3阶对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一1,且α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
由Aα=λα和A
n
α=λ
n
α,则Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=(λ
1
5
一4λ
1
3
+1)α
1
=一2α
1
故由此知,α
1
是矩阵B属于特征值μ
1
=一2的特征向量.同理可得,曰的另外两个特征值为μ
2
=μ
3
=1,设其对应的特征向量为α=(x
1
,x
2
,x
3
)
T
,则因为A是实对称矩阵,知曰也是实对称矩阵,所以有:α
1
T
α=x
1
一x
2
+x
3
=0即矩阵B属于特征值μ
2
=μ
3
=1的线性无关的特征向量可取为α
2
=(1,1,0)
T
,α
3
=(一1,0,1)
T
.故综上知:B的特征值μ
1
=一2,对应的全部特征向量为k
1
(1,一1,1)
T
,k
1
是不为零的常数,另外两个特征值μ=μ=1,对应的全部特征向量为后k
2
(1,1,0)
T
+k
3
(一1,0,1)
T
,其中k
2
,k
3
是不全为零的常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/oC54777K
0
考研数学一
相关试题推荐
设y=y(x)是由方程2y3-2y2+2xy-x2=1所确定的函数,求y=y(x)的极值.
设f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f(x)不恒为常数,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
设函数f(x)在点x0的某邻域内具有一阶连续导数,且,则()
设n阶方阵A=(aij)n×n的每行元素之和为0,其伴随矩阵A*≠O,若a11的代数余子式A11≠0,求方程组A*x=0的通解.
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,-2,3)T+(1,2,-1)T,k为任意常数.试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设A=,求:一个可逆矩阵Q,使QAT为行最简形矩阵.
设A为m×n矩阵,证明:方程Ax=Em有解的充分必要条件是R(A)=m.
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得成立.
上的平均值为________.
设随机变量X和Y的方差存在且不等于0,则D(X+Y):DX+DY是X和Y
随机试题
以下属于公理性原则的是:
某甲是国务院证券管理委员会的_工作人员,违反有关上市申请的审批规定,擅自批准不符合上市资格的公司通过申请,这个疏忽导致使许多股民遭受重大损失,甲没有从中谋取任何个人利益。甲的行为构成:()
我国招投标应当遵循的原则是()。
某企业拟开发一种新产品,有四种设计方案可供选择,见下表。根据以上资料,回答下列问题:根据等概率原则,每种状态的概率为1/3,则该企业应该选择方案()。
()可以引用和编辑文本、图像、声音、动画和视频等多种媒体素材。
观察下面这幅漫画。请你对此谈谈看法。
A、 B、 C、 D、 A原数列可化为:分母为差后等比数列,故下一项为36。分子为三级等差数列,故下一项为8+4+18=30。故空缺项应为。
以下哪部作品属于60年代的“黑色幽默”文学,用夸张、超现实的手法将欢乐与痛苦、可笑与可怖、柔情与残酷、荒唐古怪与一本正经糅合在一起?()
Britainhaslawstomakesurethatwomenhavethesameopportunitiesasmenineducation,jobsandtraining.Butit’sstillunus
KeepOurSeasCleanA)Bytheyear2050itisestimatedthattheworld’spopulationcouldhaveincreasedtoaround12billio
最新回复
(
0
)