首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2013-12-27
26
问题
(2007年试题,22)设3阶对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一1,且α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
由Aα=λα和A
n
α=λ
n
α,则Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=(λ
1
5
一4λ
1
3
+1)α
1
=一2α
1
故由此知,α
1
是矩阵B属于特征值μ
1
=一2的特征向量.同理可得,曰的另外两个特征值为μ
2
=μ
3
=1,设其对应的特征向量为α=(x
1
,x
2
,x
3
)
T
,则因为A是实对称矩阵,知曰也是实对称矩阵,所以有:α
1
T
α=x
1
一x
2
+x
3
=0即矩阵B属于特征值μ
2
=μ
3
=1的线性无关的特征向量可取为α
2
=(1,1,0)
T
,α
3
=(一1,0,1)
T
.故综上知:B的特征值μ
1
=一2,对应的全部特征向量为k
1
(1,一1,1)
T
,k
1
是不为零的常数,另外两个特征值μ=μ=1,对应的全部特征向量为后k
2
(1,1,0)
T
+k
3
(一1,0,1)
T
,其中k
2
,k
3
是不全为零的常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/oC54777K
0
考研数学一
相关试题推荐
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3.当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求出所有的ξ.
设b>a>0,证明不等式
设f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f(x)不恒为常数,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
设函数f(x)满足关系式f”(x)+[f’(x)]2=x,且f’(0)=0,则()
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解.
已知下列非齐次线性方程组(Ⅰ),(Ⅱ):当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.
设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.
适当选取函数ψ(x),作变量代换y=ψ(x)u,将y关于x的微分方程化为u关于x的二阶常系数齐次线性微分方程,求ψ(x)及常数λ,并求原方程满足y(0)=1,y’(0)=0的特解.
上的平均值为________.
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2,则当a=__________,b=____________时,统计量X服从X2分布,其自由度为_____________.
随机试题
工业企业用一种原材料生产几种产品,其原材料费用属于【】
某女,35岁。反复眼睑水肿、血压升高1年。多次查尿蛋白定量1.82~2.5g/24h,血压140~150/80~90mmHg,血肌酐86μmol/L,尿素氮6.3mmol/L,白蛋白46.2g/L。诊断:慢性肾小球肾炎,尿沉渣中可见许多
“代建制”建设工程招标时应当具备的条件包括( )。
饭店市场细分的具体方法不包括()。
汉代改《论语》中“何必去父母之邦”为“何必去父母之国”,主要是避汉高祖______的名讳。
心理测验
在形成性评价中,有关“对听、说能力的评价”的说法不恰当的是()。
下列公文标题规范的是()。
医疗急救是指对日常生活中发生的危急重症伤病,以及意外事故与灾害中的受难者快速实施必要的救护,制止和降低可能发生的死亡或危害,以维持基本生命体征和减轻痛苦,为继续救治创造条件的活动。根据上述定义,下列不属于医疗急救的是:
秦代,分布在今浙江、福建、江西、湖南及两广地区的越族人民,通称_______。
最新回复
(
0
)