首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1,+Cxx)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解是y=_________.
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1,+Cxx)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解是y=_________.
admin
2019-02-21
44
问题
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C
1
,+C
x
x)e
x
,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解是y=_________.
选项
答案
y=x(1一e
x
)+2
解析
由已知y=(C
1
+C
2
x)e
x
是齐次方程的通解可知,r=1是齐次方程特征方程二重根,则特征方程为(r一1)
2
=0,即r
2
一2r+1=0.则a=一2,b=1.
设非齐次方程的一个特解为y=Cx+d,将之代入原方程得y
*
=x+2,非齐次方程的通解为y=(C
1
+C
2
x)e
x
+x+2.
由y(0)=2,y’(0)=0得
则C
1
=0,C
2
=一1.
因此满足条件的解为y=一xe
x
+x+2=z(1一e
x
)+2.
转载请注明原文地址:https://kaotiyun.com/show/BpM4777K
0
考研数学一
相关试题推荐
在曲线x=t,y=一t2,z=t3的所有切线中,与平面x+2y+z一4=0平行的切线有().
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex一1|.证明:|a1+2a2+…+nan|≤1.
设z=z(x,y)由方程z+lnz一∫yxdt=1确定,求·
设总体X~N(μ,σ2),X1,X2,…,Xn是来自总体X的样本,令T=,求E(X1T).
设α为n维非零列向量,A=E一.证明:α为矩阵A的特征向量.
设在区间[a,b]上f(x)>0,f’(x)<0,f’’(x)>0,令S1=∫abf(x)dx,S2=f(b)(b一a),S3=[f(a)+f(b)],则().
设f(x)二阶连续可导,且曲线积分∫[3f’(x)一2f(x)+xe2x]ydx+f’(x)dy与路径无关,求f(x).
设总体X~E(λ),且X1,X2,…,Xn为总体X的简单随机样本,令则E(S12)=_______.
设L是从点(0,0)到点(2,0)的有向弧段y=x(2一x),则∫L(yex—e-y+y)dx+(xe-y+ex)dy=_________.
设总体X~E(λ),且X1,X2,…Xn为总体X的简单随机样本,令则E(S12)=______.
随机试题
A、脐疝B、腹股沟斜疝C、股疝D、腹股沟直疝E、切口疝患者男性,46岁,发现右腹股沟肿块2年,术中发现腹壁下动脉在疝囊颈外侧,应考虑为
患者女,44岁,左侧鼻塞,多清涕2年余,不伴鼻痒及打喷嚏,鼻腔检查见鼻中隔明显左偏,左中鼻道少许分泌物。鼻窦CT示:鼻中隔左偏,左侧上颌窦黏膜稍增厚,最适当的治疗是
下列肋骨中可称为假肋的是
孕妇,36岁。妊娠10周,休息时仍感胸闷、气急。查体:脉搏120次/分,呼吸22次/分,心界向左侧扩大,心尖区有Ⅱ级收缩期杂音,肺底有湿啰音,应采取的处理措施是
对工程项目进行全面管理的中心的是()
在民事诉讼程序中,下列情形可以缺席判决的有()。
在销售与收款循环的审计中,丙注册会计师确定的审计目标是“所有销售交易均已登记入账”,针对这一审计目标,下列说法中错误的是()。在生产与存货循环的审计中,丙注册会计师实施监盘程序,无法实现的审计目标是()。
一般资料:求助者,女性,35岁,已婚,工厂普通工人。案例介绍:有一次求助者上班时眼看就要迟到,就急匆匆地往车间里跑,不小心与公司男领导撞了个满怀,同事们顿时都笑起来,还有人吹起口哨,大家事后还总拿他们开玩笑。以后求助者每次去车间都会紧张,觉得同事
水仙(清)李渔水仙一花,予之命也。予有四命,各司一时:春以水仙兰花为命;夏以莲为命;秋以秋海棠为命;冬以腊梅为命。无此四花,是无命也。一季夺予一花,是夺予一季之命也。水仙以秣陵①为最,
[*]
最新回复
(
0
)