首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
admin
2017-08-31
29
问题
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
选项
答案
因为A,B正定,所以A
T
=A,B
T
=B,从而(A+B)
T
=A+B,即A+B为对称矩阵. 对任意的X≠0,X
T
(A+B)X=X
T
AX+X
T
BX,因为A,B为正定矩阵,所以X
T
AX>0,X
T
BX>0,因此X
T
(A+B)X>0,于是A+B为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/yXr4777K
0
考研数学一
相关试题推荐
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
设A与B均为n,阶矩阵,且A与B合同,则().
证明方程lnx=x-e在(1,e2)内必有实根.
设(Ⅰ)当a,b为何值时,β不可由α1,α2,α3线性表示;(Ⅱ)当a,b为何值时,β可由α1,α2,α3线性表示,写出表达式.
设三阶矩阵A的特征值为λ1=一1,λ2=2,λ3=4,对应的特征向量为ξ1,ξ2,ξ3,令P=(一3ξ2,2ξ1,5ξ3),则P-1(A*+2E)P等于().
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设f"(x)∈C[a,b],证明:存在ξ∈(a,b),使得
设φ1(x),φ2(x),φ3(x)是微分方程y"+P(x)y’+Q(x)y=f(x)的三个线性无关的特解,则该方程的通解为().
已知矩阵(Ⅰ)求可逆矩阵P,使(AP)T(AP)为对角矩阵;(Ⅱ)若A+kP正定,求k的取值.
随机试题
文件名php-xxxx.tar.gz可以看出
细胞色素aa3中除含有铁原子外还含有金属元素
设总体X的概率分布为其中是未知参数,利用样本值3,1,3,0,3,1,2,3,所得θ的矩估计值是()。
下列属于非预期性支出的有()。
无论注册会计师聘请外部专家还是事务所指派的内部专家,下列各项中,注册会计师可能与专家达成一致的有()。
GB/T4091—2001规定的8种判异准则主要适用于()。
信度的评估方法包括()。
InanOctober2008report,theCenterforDiseaseControlplacedtheU.S.29thininfantmortality.tiedwithSlovakiaandPola
WarumhatersichnichtanseineFreundegewandt,alserinSchwierigkeitenwar?
Englandisnotabigcountry:fromnorthtosouthandfromeasttowest【C1】______isonlyaboutthreehundredmiles【C2】______
最新回复
(
0
)