首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次方程组(I)为且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,a2=(一1,2,4,a+8)T. 当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
设4元齐次方程组(I)为且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,a2=(一1,2,4,a+8)T. 当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
admin
2016-01-11
60
问题
设4元齐次方程组(I)为
且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α
1
=(2,一1,a+2,1)
T
,a
2
=(一1,2,4,a+8)
T
.
当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
选项
答案
由题设条件,方程组(Ⅱ)的全部解为[*] 其中,k
1
,k
2
为任意常数. 将上式代入方程组(I),得[*]要使方程组(I)与(Ⅱ)有非零公共解,只需关于k
1
,k
2
的方程组有非零解,因为[*]所以当a≠一1时,方程组(I)和(Ⅱ)无非零公共解。 当a=一1时,方程组(*)有非零解,且k
1
,k
2
为不全为零的任意常数,此时可得方程组(I)与(Ⅱ)的全部非零公共解为[*]其中,k
1
,k
2
为不全为零的任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Bq34777K
0
考研数学二
相关试题推荐
[*]
设函数f(x)在区间[0,4]上连续,且=0,求证:存在ξε(0,4)使得f(ξ)+f(4-ξ)=0。
若方程y’’+py’+qy=0的一切解都是x的周期函数,则一定有()。
设不恒为零的函数f(x)在[0,1]上有二阶连续导数,且f(0)=f(1)=0.记M={|f(x)|)}.证明:∫01[f(x)+x(1-x)f”(x)]dx=0.
设D4=,则代数余子式A13+A23+A43=________.
设f(x)在[0,1]上二阶可导,且f(0)=f(1),f”(x)>0,当x∈(0,1)时,下列结论正确的是()①(1-x)[f(x)-f(0)]<x[f(1)-f(x)].②(1-x)[f(x)-f(0)]>x[f(1)-f(x)
当x→0时,f(x)与x2是等价无穷小,其中f(x)连续,f(t)dt与xn是同阶无穷小,则n=()
设f(x)在[0,1]上有二阶连续导数,且f(1)=f’(1)=0.证明:∫01f(x)dx=1/2∫01x2f"(x)dx;
已知三阶矩阵,记它的伴随矩阵为A*,则三阶行列式________.
随机试题
女性,25岁。无明显诱因月经量增多2个月,牙龈出血2天入院,既往体健。查体:胸腹部及四肢皮肤散在出血点和少量瘀斑,浅表淋巴结不大,牙龈少量渗血,心、肺、腹检查未见明显异常。化验血:Hbl00g/L,RBC3.3×1012/L,WBC8.2×109/L,Pl
领导体制改革的内容不包括【】
设=().
对医术与医德之间关系的理解有误的是
总分类会计科目是根据()进行设置。
()负责客户开户管理的具体实施工作。
在运输需求增大且呈现多样化趋势时,运输企业可以考虑()产品组合策略。
货物进入仓库储存前,必须经过检查验收,只有验收后的货物才可入库保管。以下属于货物入库验收目的的是()。
在下列叙述中,()是正确的。
【B1】【B12】
最新回复
(
0
)