首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是四阶方阵,A*是A的伴随矩阵,其特征值为1,一1,2,4,则下列矩阵中为可逆矩阵的是( ).
设A是四阶方阵,A*是A的伴随矩阵,其特征值为1,一1,2,4,则下列矩阵中为可逆矩阵的是( ).
admin
2022-04-10
57
问题
设A是四阶方阵,A
*
是A的伴随矩阵,其特征值为1,一1,2,4,则下列矩阵中为可逆矩阵的是( ).
选项
A、A一E
B、2A一E
C、A+2E
D、A一4E
答案
A
解析
利用矩阵行列式与其矩阵特征值的关系:|A|=λ
1
λ
2
…λ
n
判别之,其中λ
i
为A的特征值.
设A
*
的特征值为λ
1
*
,λ
2
*
,λ
3
*
,λ
4
*
,则
λ
1
*
=1,λ
2
*
=一1,λ
3
*
=2,λ
4
*
=4,,
于是 |A
*
|=1.(一1).2.4=一8,
因而|A|
4一1
=|A
*
|,故|A|
3
=一8,即|A|=一2,所以A的特征值为
因而A一E的特征值为
μ
1
=一2一1=一3,μ
2
=2一1=1,
μ
3
=一1一1=一2,μ
4
=一1/2一1=一3/2,
故|A一E|=μ
1
.μ
2
.μ
3
.μ
4
=一9≠0,所以A一E可逆.
转载请注明原文地址:https://kaotiyun.com/show/TQR4777K
0
考研数学三
相关试题推荐
把下列函数展开傅里叶级数:(1)f(x)=sinx/3(-π≤x≤π);(2)f(x)=|sinx|(-π≤x≤π)(3)f(x)=cosλx(-π≤x≤π,0<λ<1);(4)
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
设函数f(x)在[0,1]上连续.证明:∫01ef(x)dx∫01e-f(y)dy≥1.
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
设A是n阶实对称矩阵,证明:(1)存在实数c,使对一切X∈Rn,有|χTAχ|≤cχTχ.(2)必可找到一个数a,使A+aE为对称正定矩阵.
已知三元二次型XTAX经正交变换化为2y12-y22-y32,又知矩阵B满足矩阵方程BA-1=2AB+4E,且A*α=α,其中α=[1,1,-1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
设x3一3xy+y3=3确定隐函数y=y(x),求y=y(x)的极值.
设f(x)在x=0处连续,且,则曲线y=f(x)在(0,f(0))处的切线方程为__________.
设随机变量X在1,2,3,4四个数字中等可能取值,随机变量Y在1~X中等可能地取一整数值.求(X,Y)的概率分布;
设m,n均是正整数,则反常积分的收敛性()
随机试题
()是指在一定时期内,在各种可能的价格下,生产者愿意并且能够提供商品或劳务的数量。
在历史上中国共产党曾提出:①“鼓足干劲,力争上游,多快好省地建设社会主义”;②“一切反动派都是纸老虎”;③“中华人民共和国万岁”;④“打倒蒋介石,解放全中国”。按时间先后顺序排列正确的是()。
全陪在与领队核对和商定旅游日程安排应以组团社的()为依据。
生物群落是植物、动物、微生物有序协调统一的群体。()
下列哪种行为是不属于可产生意思表示效力的默示行为?()
反常积分收敛,则()。
招标人于2006年4月1日发布招标公告,2006年4月20日。发布资格项目预审公告,2006年5月10日发售招标文件,投标人于投标截止日2006年6月10日及时递交了投标文件,2006年7月20日招标人发出中标通知书,则要约生效的时间是()。【20
微分方程xy′+2y=xlnx满足的特解为__________,
SitcomsasaToolforELTEnglishteachershavebeenusingvideosintheclassroomfordecadesandnowsitcomsemergeinclassr
Thispartistotestyourabilitytodopracticalwriting.Youarerequiredtowriteabusinessletteraccordingtothefollowin
最新回复
(
0
)