首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( ).
[2007年] 设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( ).
admin
2019-04-28
66
问题
[2007年] 设向量组α
1
,α
2
,α
3
线性无关,则下列向量组线性相关的是( ).
选项
A、α
1
一α
2
,α
2
一α
3
,α
3
一α
1
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
C、α
1
—2α
2
,α
2
—2α
3
,α
3
—2α
1
D、α
1
+2α
2
,α
2
+2α
3
,α
3
+2α
1
答案
A
解析
解一 用观察易知,选项(A)中向量有关系(α
1
-α
2
)+(α
2
-α
3
)+(α
3
-α
1
)=0,故(A)中向量线性相关.
解二 由命题2.3.2.3判别之.s=3为奇数,k=3也为奇数,故(A)中向量线性相关.
(注:命题2.3.2.3 已知向量组α
1
,α
2
,…,α
s
(s≥2)线性无关,设β
1
=α
1
±α
2
,β
2
=α
2
±α
3
,…,β
s-1
=α
s-1
±α
s
,β
s
=α
s
±α
1
,其中s为向量组中的向量个数.又设上式中带负号的向量个数为k,则(1)当s与k的奇偶性相同时,向量组β
1
,β
2
,…,β
s
线性相关;(2)当s与k的奇偶性不同时,向量组β
1
,β
2
,…,β
s
线性无关.)
解三 用线性相关的定义判定.为此令
x
1
(α
1
-α
2
)+x
2
(α
2
-α
3
)+x
3
(α
3
-α
1
)=0,
即 (x
1
-x
3
)α
1
+(-x
1
+x
2
)α
2
+(-x
2
+x
3
)α
3
=0.
因α
1
,α
2
,α
3
线性无关,故
因其系数矩阵行列式等于零,故上述方程组有非零解,即α
1
-α
2
,α
2
-α
3
,α
3
-α
1
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/BzJ4777K
0
考研数学三
相关试题推荐
设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=______.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
判断级数的敛散性,若收敛是绝对收敛还是条件收敛?
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则dxdy等于().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
设L:y=e-x(x≥0).(1)求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).(2)设V(c)=V(a),求c.
已知二维随机变量(X,Y)的概率密度为(Ⅰ)试求(X,Y)的边缘概率密度fX(x),fY(y),并问X与Y是否独立;(Ⅱ)令Z=X—Y,求Z的分布函数FZ(y)(z)与概率密度fZ(y)(z)。
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
a,b取何值时,方程组有解?
随机试题
下列哪项是心脏病患者诱发心力衰竭最常见的原因
成人牙周炎患者的重要表现为
关于代理权和代理行为,下列说法有误的是()。
有一单相变压器,额定容量为SN=50kV.A,额定电压为10kV/230V,空载电流I0为额定电流的3%,满载时二次侧电压为220V,则其电压调整率△U%为()。
若非齐次线性方程组Ax=b中方程个数少于未知量个数,则下列结论中正确的是()。
进出口化妆品划分为肤用化妆品、发用化妆品、美甲化妆品、香水类、口腔卫生用品、特殊功能化妆品六大类。( )
A企业向B银行贷款50万元,C公司作为A企业的连带责任担保人。当贷款尚未到期时,A企业和C公司分别被甲、乙两地人民法院受理破产。下列关于B银行申报债权的表述正确的是()。
社会主义文艺为什么要提倡风格的多样性?
紧急状态处置,是指公安机关为维护国家安全和社会治安秩序,对突发的重大暴力犯罪、重大治安事件和重大治安灾害事故依法采取的非常措施。
π/8
最新回复
(
0
)