首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(n); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(n); ④若r(
admin
2018-01-12
25
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(n);
④若r(A)=r(B),则Ax=0与Bx=0同解。
以上命题中正确的有( )
选项
A、①②。
B、①③。
C、②④。
D、③④。
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B。
下面证明①,③正确:
对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即r(B)),故r(A)≥r(B)。
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其解空间的维数(即基础解系包含解向量的个数)相同,即
n-r(A)=n-r(B),
从而r(A)=r(B)。
转载请注明原文地址:https://kaotiyun.com/show/C0r4777K
0
考研数学一
相关试题推荐
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)一f(1)].若f(1)=,求:f(x)
计算
设直线l过点M(1,一2,0)且与两条直线垂直,则l的参数方程为___________.
求幂级数的收敛域与和函数,并求的和.
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路程
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
设都是正项级数.试证:(1)若收敛;(2)若收敛,且un单调减少,则收敛;(3)若都收敛;(4)若收敛.
求级数的和函数.
设随机变量服从几何分布,其分布律为P{X=k)=(1一p)k-1,0<p<1,k=1,2,…,求EX与DX.
曲线有()渐近线。
随机试题
沙因对经济人的假设。
萦青缭白,外与天际,_____________。《始得西山宴游记》
患者,男性,72岁,昏迷、意识不清3天急诊入院。脑穿通畸形囊肿形成的原因有
关于肺炎链球菌引起的肺炎的病理生理过程,不正确的说法是
吊桩绳扣、滑车、索具等和桩的吊点数量、位置应根据桩长、桩重、断面尺寸和配筋等进行计算,审核后选用。()
下列关于营改增行业增值税纳税义务、扣缴义务发生时间的说法,不正确的是()。
A、 B、 C、 D、 A
PC中既使用ROM,也使用SRAM和DRAM。下面关于ROM、SRAM和DRAM的叙述中,正确的是( )
通过电话线和专线将不同的局域网连接在一起的网络被称为
A、Thepeople.B、Theenvironment.C、Thetraffic.D、Theclimate.A本题问的是女士认为Cork这一城市最好的一方面是什么。对话最后,女士明确回答是人民和食物。
最新回复
(
0
)