首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵.C为m×n矩阵. (1)计算PTDP,其中P=,(Ek为k阶单位矩阵); (2)利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵.C为m×n矩阵. (1)计算PTDP,其中P=,(Ek为k阶单位矩阵); (2)利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
admin
2016-04-11
99
问题
设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵.C为m×n矩阵.
(1)计算P
T
DP,其中P=
,(E
k
为k阶单位矩阵);
(2)利用(1)的结果判断矩阵B—C
T
A
—1
C是否为正定矩阵,并证明你的结论.
选项
答案
(1)P
T
DP=[*]。(2)矩阵B-C
T
A
-1
C是正定矩阵。证明:由(1)的结果知D合同于矩阵M=[*],又D为正定矩阵,所以M为正定矩阵.因M为对称矩阵,故B—C
T
A
-1
C为对称矩阵.由M正定,知对m维零向量x=(0,0,…,0)
T
及任意的n维非零向量y=(y
1
,y
2
,…,y
n
)
T
,有 [*] 故对称矩阵B—C
T
A
-1
C为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/5Vw4777K
0
考研数学一
相关试题推荐
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0xf(t-x)dt=-3x+2,求f(x).
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|,证明:|∫abf(x)dx-(b-a)f(a)|≤(b-a)2.
设方程组,为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量。求|A*+3E|.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1,证明:存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
设函数其中g(x)二阶连续可导,且g(0)=1.确定常数a,使得f(x)在x=0处连续。
设f(x)=|sinx|在[0,(2n-1)π](n≥1)上与x轴所围区域绕y轴旋转一周所得旋转体的体积为Vn,求
一根长度为1的细棒位于x轴的区间[0,1]上,若其线密度ρ(x)=-x2+2x+1,则该细棒的质心横坐标=________.
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
根据题意设X1,X2,…,Xn是一个简单随机样本,因此X1,X2,…,Xn相互独立,且与总体同分布,从而可知[*]
随机试题
《报任安书》是__________写完《史记》之后给朋友的回信,信中抒写他无辜而遭腐刑的不幸和内心的痛苦愤懑,说明自己忍受耻辱以实现著史理想的夙愿。叙写生动,情感真挚深沉,感人至深。
Workaholism(工作狂)canbeaseriousproblem.Trueworkaholics(工作狂)wouldratherworkthandoanythingelseandtheyprobablydon’tk
免疫组化技术的关键步骤是
一群成年番鸭突然发病,病死率在60%以上,临床表现主要为体温升高、两腿麻痹、排绿色稀粪。剖检见食管黏膜出血、水肿和坏死,并有灰黄色假膜覆盖或溃疡;泄殖腔黏膜出血;肝有坏死点该群鸭发生的疾病可能是()。
能加重氯丙嗪所致的迟发性运动障碍程度的药物是
现浇钢筋混凝十板的配筋图中,钢筋的弯钩向下,表示()。
市场机制本身存在缺陷,所以不能单纯依靠市场机制,但下列各项中,()不属于市场机制的缺陷。
如图,正四面体ABCD,P、Q分别是棱AB、CD的三等分点和四等分点(AB=3AP=4CQ),棱AC上有一点M,要使M到P、Q距离之和最小,则MC:MA=()。
现代乒乓球运动以()为一局。
Trees,shrubs,flowers,andgrassgivecharacterandinteresttotheparks.
最新回复
(
0
)