首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵.C为m×n矩阵. (1)计算PTDP,其中P=,(Ek为k阶单位矩阵); (2)利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵.C为m×n矩阵. (1)计算PTDP,其中P=,(Ek为k阶单位矩阵); (2)利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
admin
2016-04-11
118
问题
设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵.C为m×n矩阵.
(1)计算P
T
DP,其中P=
,(E
k
为k阶单位矩阵);
(2)利用(1)的结果判断矩阵B—C
T
A
—1
C是否为正定矩阵,并证明你的结论.
选项
答案
(1)P
T
DP=[*]。(2)矩阵B-C
T
A
-1
C是正定矩阵。证明:由(1)的结果知D合同于矩阵M=[*],又D为正定矩阵,所以M为正定矩阵.因M为对称矩阵,故B—C
T
A
-1
C为对称矩阵.由M正定,知对m维零向量x=(0,0,…,0)
T
及任意的n维非零向量y=(y
1
,y
2
,…,y
n
)
T
,有 [*] 故对称矩阵B—C
T
A
-1
C为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/5Vw4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上二阶可导,且|f"(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:|f’(x)|≤(x∈[0,1]).
设函数f(x)可导且0≤f’(x)≤,对任意的xn,作xn+1=f(xn)(n=0,1,2,…)证明:存在且满足方程f(x)=x.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’(1)≠1,则=________.
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
以y=C1ex+C2cos2x+C3sin2x为通解的常系数齐次线性微分方程可以为()
设曲线L:(0≤t≤π/2)与l:x2+y2≤1(x≥0,y≥0)所围区域为D。计算I=(x2-y2+1)dxdy
一个容器的内侧是由x2+y2=1(y≤1/2)绕y轴旋转一周而成的曲面,长度单位为m,重力加速度为g(m/s2),水的密度为p(kg/m3)求容器的容积V
一根长度为1的细棒位于x轴的区间[0,1]上,若其线密度ρ(x)=-x2+2x+1,则该细棒的质心横坐标=________.
3个电子元件并联成一个系统,只有当3个元件损坏2个或2个以上时,系统便报废.已知电子元件的寿命服从参数为1/1000的指数分布,求系统的寿命超过1000h的概率.
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:第3把钥匙才打开门
随机试题
中压废热锅炉的蒸汽压力为()。
A.机械性刺激敏感B.突发性电击样痛C.定点性咀嚼剧痛D.疼痛不定位,夜间加重E.刺痛人洞引起疼痛下述疾病可能出现的疼痛描述正确的是深龋
赵某与罗某系邻居。两人因日常小事纠纷不断。某日,两人又起纠纷,争吵中罗某抄起木棍,打在赵某头上,致使其严重脑震荡,左耳失聪,赵某因此受重伤而向公安机关报案。公安机关认为本案系邻里纠纷,以民事调解为宜,不予立案。赵某即将本案诉至人民法院。下列选项中,哪一项不
当电梯轿厢使用玻璃轿壁时,必须安装()高度的扶手。
你认为最重要的样品是()
环境创设中,幼儿与教师共同合作,共同参与,符合幼儿环境创设的()原则。
森林效应:一棵树如果单独生长在一个地方,往往比较矮小、畸形,而当众多树木生长在一起、,共用水源的时候,往往能长得郁郁葱葱。请问“森林效应”对你有什么启示?
长期以来,我国城市管理执法体制弊端多多,部门林立,各管一摊。管市容的不管破坏绿化的,管破坏绿化的不管违章建设,管违章建设的不管街头无照摆摊……而许多违法问题的处理又常常涉及几个执法部门。比如,对于马路市场,工商、交通、市容等执法部门都可以管,叉都可以不管。
用来控制、指挥和协调计算机各部件工作的是()。
HIV&AIDS[A]AIDShasnowsurpassedtheBlackDeathonitscoursetobecometheworstpandemicinhumanhistory.Attheendof
最新回复
(
0
)