首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论a,b为何值时,方程组 无解、有唯一解、有无穷多解.有解时,求其解.
讨论a,b为何值时,方程组 无解、有唯一解、有无穷多解.有解时,求其解.
admin
2018-12-21
55
问题
讨论a,b为何值时,方程组
无解、有唯一解、有无穷多解.有解时,求其解.
选项
答案
对方程组的增广矩阵作初等行变换,有 [*] 所以①当a=-1,b≠36时,r(A)=3≠r(A[*]b)=4,方程组无解. ②当a≠-1且a≠b,b任意时,r(A)=r(A[*]b)=4,方程组有唯一解,唯一解为 [*] ③当a=-1,b=36时,r(A)=r(A[*]b)=3,则增广矩阵为 [*] 所以Ax=0的基础解系为ξ
1
=(﹣2,5,0,1)
T
;Ax=b的特解为η
1
=(6,﹣12,0,0)
T
. 故Ax=b的通解为k
1
ξ
1
﹢η
1
=k
1
[*],其中k
1
是任意常数. ④当a=6,b任意时,r(A)=r(A[*]b)=3,则增广矩阵为 [*] 所以Ax=0的基础解系为ξ
2
=(-2,1,1,0)
T
;Ax=b的特解为η
2
=[*](114-2b,-(12﹢2b),0,b-36)
T
. 故Ax=b的通解为k
2
ξ
2
﹢η
2
=k
2
[*],其中k
2
是任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/CAj4777K
0
考研数学二
相关试题推荐
(2013年)设Dk是圆域D={(χ,y)|χ2+y2≤1)在第k象限的部分,记IK=(y-χ)dχdy(k=1,2,3,4),则【】
(2007年)设函数f(χ,y)连续,则二次积分f(χ,y)dy等于【】
(2014年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)dχ.
(2007年)设f(χ)是区间[0,]上的单调、可导函数,且满足其中f-1是厂的反函数,求f(χ).
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βr线性表示,则【】
(2000年)设χOy平面上有正方形D={(χ,y)|0≤χ≤1,0≤y≤1}及直线l:χ+y=t(t≥0).若S(t)表示正方形D位于直线l左下部分的面积,试求∫0χS(t)dt(χ≥0).
(2007年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5=4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2006年)设函数g(χ)可微,h(χ)=e1+g(χ),h′(1)=1,g′(1)=2,则g(1)等于【】
(2007年)设函数f(χ),g(χ)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
(1989年)设f(z)=在χ=0处连续,则常数a与b应满足的关系是______.
随机试题
A.贫血伴球形红细胞增多B.贫血伴靶形红细胞增多C.贫血伴红细胞碎片增多D.贫血伴红细胞CD55、CD59降低E.贫血伴血肌酐增高地中海性贫血
流行病学的研究对象是()
下列指标中,属于控制性详细规划中规定性指标的有()。[2006年考题]
计算有侧移多层框架时,柱的计算长度系数取值()。
在工程施工中,除了设备安装必须配合土建结构施工外,安装工程实际工期为()个月。
技术分析流派对股票价格波动原因的解释是()。
方某工作已满15年,2009年上半年在甲公司已休带薪年休假(以下简称年休假)5天;下半年调到乙公司工作,提出补休年休假的申请。乙公司对方某补休年休假申请符合法率规定的答复是()
国际货币基金组织第八条款规定的货币可兑换类型主要是指()。
系统规划与定义包括以下具体内容______。①任务陈述②确定任务目标③确定系统范围和边界④确定用户视图A)①②④B)①②③C)②③④D)①②③④
Whatisthesourceofthisextremeself-confidencefoundinalmostalloptimists(乐观主义者),thisbeliefthattheycanaccomplishgr
最新回复
(
0
)