首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系: 问平均内径μ取何值时,销售一个零
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系: 问平均内径μ取何值时,销售一个零
admin
2018-01-12
104
问题
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系:
问平均内径μ取何值时,销售一个零件的平均利润最大。
选项
答案
依据数学期望的计算公式及一般正态分布的标准化方法,有 E(T)=一1×P{X<10}+20×P{10≤X≤12}一5×P{X>12} =一Ф(10一μ)+20[—Ф(12一μ)一Ф(10一μ)]一5[1一Ф(12一μ)] =25Ф(12一μ)一21Ф(10一μ)一5, 可知销售利润的数学期望E(T)是μ的函数。 要求E(T)的最大值,令其一阶导数为0,有 [*] 因实际问题一定可取到最值,所以当μ=11一[*]时,销售一个零件的平均利润最大。
解析
转载请注明原文地址:https://kaotiyun.com/show/CCX4777K
0
考研数学三
相关试题推荐
设二维随机变量(X,Y)的概率密度为求P{X+Y≤1}。
设随机变量X的分布函数为
某城市共有N辆汽车,车牌号码从1到N。有一人将他所遇到的该城市的n辆汽车的车牌号码(可能有重复的号码)全部抄下来,假设每辆汽车被遇到的机会相同,求抄到的最大号码正好是k(1≤k≤N)的概率。
设总体X的概率密度为其中λ>0是未知参数,α>0是已知常数。试根据来自总体X的简单随机样本X1,X2,…,Xn,求λ的最大似然估计量λ。
设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数。求(Ⅰ)Y的概率密度FY(y);(Ⅱ)cov(X,Y);
一商店经销某种商品,每周的进货量X与顾客对该种商品的需求量Y是两个相互独立的随机变量,且都服从区间[10,20]上的均匀分布。商店每售出一单位商品可得利润1000元;若需求量超过了进货量,可以其他商店调剂供应,这时每单位商品的售出获利润为500元。试求此商
设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则y与Z的相关系数为________。
随机试题
德育目标是教育目标在人的()方面的总体规格要求。
所有的作物都是自野生品种演化而来,这意味着,用达尔文主义的说法就是,野生品种在漫长的时间里获得了生存所需的适应能力。然而在驯化与种植中,发生了遗传侵蚀,这种适应能力也遭受损失,甚至其野生祖先也可能灭绝;于是今天的很多作物一旦突然间无人种植,就会直接消亡。
在规定条件下,仪表绝对误差的最大值不超过量程±0.4%的是()级仪表。
(I)《华盛顿邮报》(E)《华尔街日报》
下列关于我国土地制度的表述中,正确的有()
结账前要进行的检查包括()。
对他们来说,像以前那样经常见到这样的美景不容易了。
家庭治疗者注重()的测评与调整。
类风湿关节炎极具特异性的自身抗体是
已知A是n阶实对称矩阵,满足A2一3A+2E=O,且B=A2一2A+3E.(Ⅰ)求B-1;(Ⅱ)证明:B正定.
最新回复
(
0
)