首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T。 (Ⅰ)求方程组(1)的一个基础解系; (Ⅱ)当a为何值时,方程组(1)与(2)
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T。 (Ⅰ)求方程组(1)的一个基础解系; (Ⅱ)当a为何值时,方程组(1)与(2)
admin
2019-02-26
97
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,-1,a+2,1)
T
,α
2
=(-1,2,4,a+8)
T
。
(Ⅰ)求方程组(1)的一个基础解系;
(Ⅱ)当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
(Ⅰ)对方程组(1)的系数矩阵作初等行变换,有 [*] 则n-r(A)=4-2=2,基础解系由两个线性无关的解向量构成。取x
3
,x
4
为自由变量,得 β
1
=(5,-3,1,0)
T
,β
2
=(-3,2,0,1)
T
是方程组(1)的基础解系。 (Ⅱ)设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数。 由k
1
β
1
+k
2
β
2
-l
1
α
1
-l
2
α
2
=0,得齐次方程组 [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠-1时,方程组(3)的系数矩阵变为[*]。可知方程组(3)只有零 解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a=-1时,方程组(3)系数矩阵变为[*],解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。 于是η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
。 所以当a=-1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,-1,1,1)
T
+l
2
(-1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/CG04777K
0
考研数学一
相关试题推荐
设函数f(x,y)在(2,一2)处可微,满足f(sin(xy)+2cosx,xy一2cosy)=1+x2+y2+o(x2+y2),这里o(x2+y2)表示比x2+y2高阶的无穷小(x,y)→(0,0)时),试求曲面z=f(x,y)在点(2,一2
设讨论当a,b取何值时,方程组AX=b无解、有唯一解、有无数个解,有无数个解时求通解.
当常数a取何值时,方程组无解、有无穷多个解?在有无穷多个解时,求出其通解.
设u(x,y)在平面有界闭区域D上具有二阶连续偏导数,且,则u(x,y)的()
设A是n阶非零矩阵,且A*=AT,证明:A可逆。
设a>b>c>0,证明
设线性方程组(Ⅰ)证明当a1,a2,a3,4两两不相等时,方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),并且β1=(-1,1,1)T和β2=(1,1,-1)T是两个解。求此方程组的通解。
(2003年)将函数展开成x的幂级数,并求级数的和。
设一设备在时间长度为t的时间内发生故障的次数N(t)~P(λt).求相继两次故障之间时间间隔T的概率分布;
已知z=f(x,y)满足:dz=2xdx一4ydy且f(0,0)=5.(1)求f(x,y);(2)求f(x,y)在区域D={(x,y)|x2+4y2≤4}上的最小值和最大值.
随机试题
案情:某县公安局对一起共同盗窃案件立案侦查,以公安局长刁某为首组成侦破小组,查获犯罪嫌疑人甲、乙、丙涉嫌人户盗窃。在侦查过程中,丙聘请的律师肖律师未与丙商量,独立提出本案的侦查员黄某与被害人是同住一个小区的邻居,关系密切,申请其回避。侦查科的科长立即停止了
补伤的质量检查规定三项内容,包括()、漏点和粘结力检查。
数组的长度是______,线性表的长度是______。
男,65岁。头晕、步行不稳、饮水呛咳1周。既往有高血压病史。头颅MRI示延髓背外侧梗塞。闭塞的血管是
背景某住宅工程,建筑面积12300m2,地上6层,地下2层。筏板基础,框架剪力墙结构。预拌混凝土。底板防水为高聚物改性沥青卷材两层防水。屋面为卷材防水,面积2000m2。室内厕浴间为聚合物水泥防水涂料。工期365日历天。某防水公司中标后成立了项目
老师的试卷经常超出授课范围,一定会降低该试卷的()
共同犯罪行为包括
维新派的变法维新活动引起封建守旧派和反对改变封建政治制度的洋务派的反对,他们利用自己的地位和权力,对维新思想发动攻击。于是维新派与守旧派之间展开了一场激烈论战。论战主要围绕问题有()
蓝牙技术工作在全球通用的2.4GHz ISM频段,其最高数据速率为(25)。
数据库系统与文件系统的主要区别是______。
最新回复
(
0
)