首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1=x,y2=x+e2x,y3=x(1+e2x)是二阶常系数线性非齐次方程的解,求该微分方程的通解及该方程.
设y1=x,y2=x+e2x,y3=x(1+e2x)是二阶常系数线性非齐次方程的解,求该微分方程的通解及该方程.
admin
2019-06-04
59
问题
设y
1
=x,y
2
=x+e
2x
,y
3
=x(1+e
2x
)是二阶常系数线性非齐次方程的解,求该微分方程的通解及该方程.
选项
答案
设所求二阶常系数线性非齐次方程为 y’’+a
1
y’+a
2
y=f(x), (*) y’’+a
1
y+a
2
y=f(x) (*) 对应的齐次方程为 y’’+a
1
y’+a
2
y=0, (**) y’’+a
1
y’+a
2
y=0, (**) 由非齐次方程与齐次方程解的关系,可知y
2
-y
1
=e
2x
,y
3
-y
1
=xe
2x
是方程(**)的解, 又因为[*]=x≠R(常数). 故方程(**)的通解为y(x)=C
1
e
2x
+C
2
xe
2x
=(C
1
+C
2
x)e
2x
. 由线性微分方程解的结构,非齐次方程通解为y=(C
1
+C
2
x)e
2x
+x. 由齐次方程(**)通解的形式可知,λ=2为特征方程λ
2
+a
1
λ+a
2
=0的二重根. 由根与系数关系可得a
1
=-4,a
2
=4. 于是方程(*)为y’’-4y’+4y=f(x). 因为y
1
=x为其解,将其代入得x’’-4x’+4x=f(x),则f(x)=4(x-1). 故所求方程为y’’-4y’+4y=4(x-1).
解析
由二阶线性非齐次微分方程与其对应的齐次微分方程的解之间的关系,先求出微分方程的通解,再由通解形式求出微分方程.
转载请注明原文地址:https://kaotiyun.com/show/CQc4777K
0
考研数学一
相关试题推荐
设随机事件A与B相互独立,A与C相互独立,BC=.若P(A)=(B)=,P(AC|AB∪C)=.则P(C)=_______.
若向量组α1=(1,1,2,一2),α2=(1,3,一x,一2x),α3=(1,一1,6,0)的秩为2,则x=_________.
设矩阵A和B满足关系式AB=A÷2B,其中A=,求矩阵B.
设A、B均为三阶矩阵,E是三阶单位矩阵.已知AB=2A+B,B=,则(A—E)—1=_________.
设n≥2为正整数,则An一2An—1=_________.
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为ξ1=.求Anβ(行为自然数).
设矩阵当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时,求解此方程.
4个平面aix+biy+ciz=di(i=1,2,3,4)交于一条直线的充要条件是对应的联立线性方程组的系数矩阵A与增广矩阵=
求一条凹曲线,已知其上任意一点处的曲率其中α为该曲线在相应点处的切线的倾斜角(cosα>0),且该曲线在点(1,1)处的切线为水平方向.
函数在[-π,π]上展开为傅里叶级数(ancosnx+bnsinnx),则an=______,bn=______,和函数S(x)=______.
随机试题
A.抑制肠内细菌生长,促进乳酸杆菌繁殖B.与游离氨结合,从而降低血氨C.与氨合成尿素和鸟氨酸,从而降低血氨D.被细菌分解成乳酸和乙酸,降低肠道的pHE.纠正氨基酸代谢不平衡,抑制假性神经递质形成支链氨基酸治疗肝性脑病的机制是
对急性肾小球肾炎最为合适的治疗措施是
对比增强磁共振血管造影所采用的序列是
A.医生对病人的呼叫或提问给予应答B.医生的行为使某个病人受益,但却给别的病人带来了损害C.妊娠危及母亲的生命时,医生给予引产D.医生给病人实施必要的检查或治疗E.医生满足病人的一切要求【2005年考试真题】
资产组合的收益-风险特征如图5-2所示,下列说法中错误的是( )。
对购房人资格的限制属于()。
云云在某超市第一次买到了一瓶过期的酸奶.第二次又买到了没有生产日期的糖果,她从此再也没有到那家超市买过东西,她觉得那里卖的都是劣质产品。以下哪项推理方式与题干相似?
SowhyisGooglesuddenlysointerestedinrobots?That’sthequestioneveryone’saskingafteritemergedthismonththatthein
Itissaidthatmorethanoneorganization______inthiswell-knowncriminalcase.
Allchildrenare【B1】______ofhavingfriends,althoughhighselfesteemreallyhelpsthem【B2】______,saysKathyNoll.Nollisthe
最新回复
(
0
)