首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1=x,y2=x+e2x,y3=x(1+e2x)是二阶常系数线性非齐次方程的解,求该微分方程的通解及该方程.
设y1=x,y2=x+e2x,y3=x(1+e2x)是二阶常系数线性非齐次方程的解,求该微分方程的通解及该方程.
admin
2019-06-04
31
问题
设y
1
=x,y
2
=x+e
2x
,y
3
=x(1+e
2x
)是二阶常系数线性非齐次方程的解,求该微分方程的通解及该方程.
选项
答案
设所求二阶常系数线性非齐次方程为 y’’+a
1
y’+a
2
y=f(x), (*) y’’+a
1
y+a
2
y=f(x) (*) 对应的齐次方程为 y’’+a
1
y’+a
2
y=0, (**) y’’+a
1
y’+a
2
y=0, (**) 由非齐次方程与齐次方程解的关系,可知y
2
-y
1
=e
2x
,y
3
-y
1
=xe
2x
是方程(**)的解, 又因为[*]=x≠R(常数). 故方程(**)的通解为y(x)=C
1
e
2x
+C
2
xe
2x
=(C
1
+C
2
x)e
2x
. 由线性微分方程解的结构,非齐次方程通解为y=(C
1
+C
2
x)e
2x
+x. 由齐次方程(**)通解的形式可知,λ=2为特征方程λ
2
+a
1
λ+a
2
=0的二重根. 由根与系数关系可得a
1
=-4,a
2
=4. 于是方程(*)为y’’-4y’+4y=f(x). 因为y
1
=x为其解,将其代入得x’’-4x’+4x=f(x),则f(x)=4(x-1). 故所求方程为y’’-4y’+4y=4(x-1).
解析
由二阶线性非齐次微分方程与其对应的齐次微分方程的解之间的关系,先求出微分方程的通解,再由通解形式求出微分方程.
转载请注明原文地址:https://kaotiyun.com/show/CQc4777K
0
考研数学一
相关试题推荐
设α、β均为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)<2.
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为ξ1=.求Anβ(行为自然数).
4个平面aix+biy+ciz=di(i=1,2,3,4)交于一条直线的充要条件是对应的联立线性方程组的系数矩阵A与增广矩阵=
设二次型f(x1,x2,x3)=ax12+2x22—2x32+2bx1x2(b>0).其中二次型A的矩阵A的特征值之和为1,特征值之积为—12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,一1)=_______________.
当掷一枚均匀硬币时,问至少应掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.97试用切比雪夫不等式和中心极限定理来分别求解.
对随机变量X,已知EekX.存在(k>0常数),证明:P{X≥ε}≤.E(ekX).(其中ε>0).
随机变量X可能取的值为-1,0.1,且如EX=0.1,EX2=0.9.求的分布列.
设某曲线L的线密度μ=x2+y2+z2,其方程为x=tcost,y=etsint,,-∞<t≤0.(1)求曲线L的弧长l;(2)求曲线L对z轴的转动惯量J;(3)求曲线L对位于原点处质量为m的质点的引力(k为引力常数).
在空间坐标系的原点处,有一单位正电荷,设另一单位负电荷在椭圆z=x2+y2,x+y+z=1上移动,问两电荷间的引力何时最大,何时最小?
随机试题
多环芳烃化合物是食品污染中危害较小的一类物质,具有诱癌作用,种类少,致癌性较弱。()
引起风湿性心瓣膜病的病原菌是
平均动脉压大约等于()
关于口服短效避孕药的副反应,正确的是
A.舒林酸B.塞来昔布C.吲哚美辛D.布洛芬E.萘丁美酮用于类风湿性关节炎治疗的选择性环氧酶一2(COX一2)抑制剂是()
根据《注册造价工程师管理办法》的规定,取得造价工程师执业资格证书的人员,初始注册的有效期和延续注册的有效期分别为()年。
年报应于年度终了后()个月内报出。
关于破产制度与同是解决债务纠纷的民事诉讼和执行制度的区别有()。
2005年底,全国城镇房屋建筑面积中非住宅建筑面积为()2005年在全国31个省市自治区中,城镇人均住宅建筑面积最大的是()
Anindustrialsociety,especiallyoneascentralizedandconcentratedasthatofBritain,isheavilydependentoncertainessent
最新回复
(
0
)