首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx的秩为1,A中各行元素之和为3,则f在正交变换x=Qy下的标准形为________.
设二次型f(x1,x2,x3)=xTAx的秩为1,A中各行元素之和为3,则f在正交变换x=Qy下的标准形为________.
admin
2021-07-27
44
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax的秩为1,A中各行元素之和为3,则f在正交变换x=Qy下的标准形为________.
选项
答案
f=3y
1
2
解析
f在正交变换x=Qy下的标准形,即为以二次型矩阵的特征值为组合系数的3个变量的平方和,因此,求解的关键是找到A的全部特征值.注意到二次型矩阵为实对称矩阵,对实对称矩阵而言,二次型的秩即其矩阵A的秩等于1,知A仅含一个非零特征值,且λ=0为其二重特征值.另外,由已知条件A的各行元素之和为3,有
从而进一步确定了A的非零特征值为3.因此,可以得到λ=3,二次型f在正交变换x=Qy下的标准形为f=3y
1
2
.
转载请注明原文地址:https://kaotiyun.com/show/CQy4777K
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设证明二次型f对应的矩阵为2ααT+ββT;
n阶矩阵A和B具有相同的特征值是A和B相似的()
设函数f(χ)在[0,π]上连续,且∫0πf(χ)sinχdχ=0∫0πf(χ)cosχdχ,=0.证明:在(0,π)内f(χ)至少有两个零点.
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是()
设常数k>0,函数在(0,+∞)内零点个数为()
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1—λ1)β1+…+(ks一λs)βs=0,则
某五元齐次线性方程组的系数矩阵经初等变换,化为.则自由变量可取为(1)x4,x5.(2)x3,x5.(3)x1,x5.(4)x2,x3.那么正确的共有()
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=2χ1χ2+2χ1χ3+6χ2χ3.
已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2,求正交变换x=Qy,将f化为标准形.
随机试题
鸡肉的肉质纤维细嫩,含有大量的谷氨酸,滋味鲜美。()
赵武灵王北略中山之地,至房子,遂至代,北至无穷,西至河,登黄华之上。与肥义谋胡服骑射以教百姓,曰:“愚者所笑,贤者察焉。虽驱世以笑我,胡地、中山,吾必有之!”遂胡服。赵武灵王为什么要进行这样的改革?
下丘脑GnRH的释放属于细胞间信息传递的哪种方式
A.手法复位石膏外固定B.闭合复位外固定支架固定C.持续性颅骨牵引D.内固定持续皮牵引E.切开复位内固定
患者女,47岁。因“踝关节疼痛半月余”就诊。查体:大致正常。辅助检查:尿蛋白(+),血肌酐156μmol/L,血尿酸650μmol/L,余无明显异常。诊断:高尿酸血症;慢性肾脏病。医嘱:治疗用药和用药方法别嘌醇片100mg,口服,3次/日;碳酸氢
依法必须招标的工程建设项目的(),可不报项目审批部门核准或招标投标监督部门备案。
图示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆轮中心O的水平轴以匀角速度ω转动。则系统动量、对中心O的动量矩、动能的大小为()。
图4—39所示机构中,杆O1A=02B,O1A//O2B,杆O2C=O3D,O2C//O3D,且O1A=20cm,O2C=40cm,CM=MD=30cm,若杆O1A以角速度ω=3rad/s匀速转动,则M点速度的大小和B点加速度的大小分别为()。
确认期货公司是否将客户下达的交易指令人市交易,应当以期货交易所的交易记录、期货公司通知的交易结算结果与()为标准。
请选出表述不当的一句。( )
最新回复
(
0
)