首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求椭球面x2+2y2+z2=22上平行于平面x-y+2z=0的切平面方程。
求椭球面x2+2y2+z2=22上平行于平面x-y+2z=0的切平面方程。
admin
2015-11-16
77
问题
求椭球面x
2
+2y
2
+z
2
=22上平行于平面x-y+2z=0的切平面方程。
选项
答案
解 令F(x,y,z)=x
2
+2y
2
+z
2
-22,则 F’
x
=2x,F’
y
=4y,F’
z
=2z。 设所求切平面与椭球面切于点(x
0
,y
0
,z
0
),则此切平面的法矢量为 n={2x
0
,4y
0
,2z
0
}。 此切平面与平面x-y+2z=0平行,故 [*]① 由于点(x
0
,y
0
,z
0
)在椭球面上,故 x
0
2
+2y
0
2
+z
0
2
=22。 ② 由式①、式②即得所求切点为(-2,1,-4)及(2,-1,4),将此两点的坐标代入切平面方程: x
0
(x-x
0
)+2y
0
(y-y
0
)+z
0
(z-z
0
)=0, 即得所求的切平面方程为 -2(x+2)+2(y-1)-4(z+4)=0 与 2(x-2)-2(y+1)+4(z-4)=0; 或化简为 x-y+2z+11=0 与 x-y+2z-11=0。
解析
[解题思路] 设出切点坐标(x
0
,y
0
,z
0
),求出切平面的法矢量,找出(x
0
,y
0
,z
0
)所满足的条件求出x
0
,y
0
,z
0
,即可写出切平面方程。
转载请注明原文地址:https://kaotiyun.com/show/CUw4777K
0
考研数学一
相关试题推荐
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,-2,1)T,η3=(-2,-1,2)T,它们的特征值依次为1,2,3,求A.
求微分方程y〞+4y′+4y=eaχ的通解.
计算二重积分,其中D是第一象限中由直线y=x和曲线y=x3所围成的封闭区域.
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
设A为n阶矩阵且r(A)=n-1.证明:存在常数k,使得(A*)2=kA*.
设平面区域求二重积分
求Z的概率密度fZ(z).
设函数f(x)(x≥0)连续可微,f(0)=1,已知曲线y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积与曲线y=f(x)在[0,x]上的弧长值相等,求f(x).
设P(x0,y0)为椭圆3x2+a2y2=3a2(a>0)在第一象限部分上的一点,已知在P点处椭圆的切线、椭圆及两坐标轴所围图形D的面积的最小值为2(1-1/4π)求D绕x轴旋转一周所得旋转体的体积V
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
随机试题
简述郭璞《游仙诗》的内容。
下列选项中,不属于可靠性技术的是()
下面药物,不能用于治疗子宫内膜癌的为
凡有下列()情形之一的,不得再次发行公司债券。
以下关于中部六省的描述,不正确的是()。
2013年11月,某县团委就在全县范围内开展青少年读书活动的情况,写了《关于在全县开展青少年读书活动的报告》,报告回顾了读书活动的情况,举出典型案例和数据说明了读书活动的效果,报告最后还写到:“开展青少年读书活动的一个重要方面,是推荐合适的书目,为此,我们
2011年1—5月,国有企业累计实现营业总收入141450.7亿元,同比增长24.3%。中央企业(包括中央管理企业和部门所属企业,下同)累计实现营业总收入90572.8亿元,同比增长24%。其中,中央管理企业累计实现营业总收入77770.5亿元,同比增长2
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe20thcenturyandthediffusionofprintinginthe15thand1
按所使用的数据模型来分,数据库可分为哪3种模型?
Beforeconsideringthisquestionitisinterestingtoreviewbrieflytheevolutionofthe【M1】______mindastheinstrument.The
最新回复
(
0
)