首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)为连续函数,且f(x,y)=e—x2—y2+xy2f(u,υ)dudυ,其中D:u2+υ2≤a2(a>0),则f(x,y)=________.
设f(x,y)为连续函数,且f(x,y)=e—x2—y2+xy2f(u,υ)dudυ,其中D:u2+υ2≤a2(a>0),则f(x,y)=________.
admin
2022-01-06
55
问题
设f(x,y)为连续函数,且f(x,y)=e
—x
2
—y
2
+
xy
2
f(u,υ)dudυ,其中D:u
2
+υ
2
≤a
2
(a>0),则f(x,y)=________.
选项
答案
e
—(x
2
+y
2
)
+π(1—e
—a
2
)xy
2
解析
注意
f(u,υ)dudυ为常数,记为A,由于xy
2
对u、υ来说为常数,因此对u,υ积分时可提到积分号外
f(x,y)=e
—x
2
—y
2
+Axy
2
.
求f(x,y)归结为求常数A.等式两边在D内积分得
d(x,y)dσ=
e
—(x
2
+y
2
)
dσ+A
xy
2
dσ ①
作极坐标变换
e
—(x
2
+y
2
)
dσ=∫
0
2π
dθ∫
0
a
e
—r
2
rdr= —πe
—r
2
|
0
a
=π(1—e
—a
2
又
xy
2
dσ=0 (D关于y轴对称,被积函数对x为奇函数),
将它代入①式
A=π(1—e
—a
2
).
因此 f(x,y)=e
—(x
2
+y
2
)
+π(1—e
—a
2
)xy
2
.
转载请注明原文地址:https://kaotiyun.com/show/Msf4777K
0
考研数学二
相关试题推荐
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=__________。
设则f(x)在点x=0处[].
下列命题中,(1)如果矩阵AB=E,则A可逆且A一1=B.(2)如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E.(3)如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆.(4)如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆.正确的是(
设函数f(x)在区间[a,b]上连续,且f(x)>0,则方程在开区间(a,b)内的根有
若f(1+χ)=af(χ)总成立,且f′(0)=b.(a,b为非零常数)则f(χ)在χ=1处【】
微分方程y〞-4y=χ+2的通解为().
设非齐次线性方程组Aχ=b有两个不同解,β1和β2其导出组的一个基础解系为α1,α2,c1,c2为任意常数,则方程组Aχ=b的通解为【】
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
A,B均是n阶矩阵,且AB=A+B证明:A—E可逆,并求(A—E)-1.
随机试题
关于小儿腹泻不正确的是
下列关于《伯尔尼公约》的说法中,错误的是()。
入芝兰之室久而不闻其香,入鲍鱼之肆久而不觉其臭,这种心理现象称为适应现象。()
药品法规定,发运中药材必须有包装。在每件包装上,必须注明
港口工程地质调查与测绘工作包括下列()项。
采用比率法进行施工成本分析,常用的比率法不包括()。
下列做法中,违背“公道”要求的是()。
在Windows中,用“创建快捷方式”创建的图标______。
Thewitch______magicontheSnowWhitesothatshe______foramonth.
【B1】【B18】
最新回复
(
0
)