首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解. (1)求常数; (2)求方程组AX=0的通解.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解. (1)求常数; (2)求方程组AX=0的通解.
admin
2021-11-15
75
问题
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
皆为AX=0的解.
(1)求常数;
(2)求方程组AX=0的通解.
选项
答案
(1)因为r(A)=1,所以方程组AX=0的基础解系含有三个线性无关的解向量,故(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
线性相关,即[*]=0,解得a=6. (2)因为(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
线性无关,所以方程组AX=0的通解为X=k
1
(1,-2,1,2)
T
+k
2
(1,0,5,2)
T
+k
3
(-1,2,0,1)
T
(k
1
,k
2
,k
3
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/CYy4777K
0
考研数学二
相关试题推荐
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数。
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设的一个基础解系为,写出的通解并说明理由。
证明线性方程组有解的充分必要条件是方程组是同解方程组。
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4
设a1,a2,...at为AX=0的一个基础解系,Β不是AX=0的解,证明:Β+Βa1,Β+a2,...Β+at线性无关。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
设A为三阶实对称矩阵,a1=(a,-a,1)T是方程组AX=0的解,a2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=______.
已知三阶矩阵A的三个特征值为1,2,3,则(A-1)*的特征值为_________.
随机试题
甲县工商局对汤山纺织厂作山罚款200万元的处罚决定,并且立即执行。汤山纺织厂向市工商局申请复议,市工商局维持了处罚决定,纺织厂随后向法院提起诉讼,一审法院判决维持该处罚决定。汤山纺织厂提出上诉,在二审中才提出损害赔偿的要求,二审法院认定县工商局作出的处
依其控制的内容,经营者控制的可分为【】
酚妥拉明:
撤销权在性质上属于()。
由具有专业知识和经验的工程技术人员对资产的实体各主要部位进行观察,以判断确定被评估建筑物的损耗率的方法称为( )。
阅读《珍珠鸟》教学实录(片段),按照要求答题。师:(看图)在作者眼里,鸟是幸福的,作者也是幸福的。这是多么美好的意境呀!你能给书上的插图起个名字吗?(学生思考片刻,纷纷举手)生:“幸福人家”。生:“友谊地久天长”。
在一种网络游戏中,如果一位玩家在A地拥有一家旅馆,他就必须同时拥有A地和B地。如果他在C花园拥有一家旅馆,他就必须拥有C花园以及A地和B地两者之一。如果他拥有B地,他还拥有C花园。假如该玩家不拥有B地,可以推出下面哪一个结论?
若函数f(x)=(x-1)(x-2)(x-3)(x-4),则f’(x)的零点的个数为()。
America—thegreat"meltingpot"—hasalwaysbeenarichblendofculturaltraditionsfromallovertheworld.ManyAmericanfamil
Holdthereceiverasclosetoyourearaspossibleandtakedowneverywordofthemessage.
最新回复
(
0
)