首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明: (1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ); (2)存在η∈(a,b),使得nf’(η)+f(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明: (1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ); (2)存在η∈(a,b),使得nf’(η)+f(η)=0.
admin
2019-09-04
56
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:
(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ);
(2)存在η∈(a,b),使得nf’(η)+f(η)=0.
选项
答案
(1)令φ(x)=e
-x
2
f(x),因为f(a)=f(b)=0,所以φ(a)=φ(b)=0, 由罗尔定理,存在ξ∈(a,b),使得φ’(ξ)=0, 而φ’(x)=e
-x
2
[f’(x)-2xf(x)]且e
-x
2
≠0,故f’(ξ)=2ξf(ξ). (2)令φ(x)=xf(x),因为f(a)=f(b)=0,所以φ(a)=φ(b)=0, 由罗尔定理,存在η∈(a,b),使得φ’(η)=0, 而φ’(x)=xf’(x)+f(x),故ηf’(η)+f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/CiJ4777K
0
考研数学三
相关试题推荐
(2017年)设a0=1,a1=0,的和函数.(Ⅰ)证明幂级数的收敛半径不小于1;(Ⅱ)证明(1一x)S’(x)-xS(x)=0(x∈(一1,1)),并求S(x)的表达式.
(1999年)计算二重积分其中D是由直线x=一2,y=0,y=2以及曲线所围成的平面区域.
设函数f(x)在[0,1]上连续.在开区间(0,1)内大于零,并且满足(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时.图形S绕x轴旋转一周所得旋转体的体积最小.
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程的解.求方程通解及方程.
设n阶矩阵A正定,X=(x1,x2,…,xn)T.证明:二次型f(x1,x2,…,xn)为正定二次型.
两家影院竞争1000名观众,每位观众随机地选择影院且互不影响.试用中心极限定理近似计算:每家影院最少应设多少个座位才能保证“因缺少座位而使观众离去”的概率不超过1%?(Ф(2.328)=0.9900)
设一批零件的长度服从正态分布N(μ,σ2),其中μ,σ2均未知。现从中随机抽取16个零件,测得样本均值=20(cm),样本标准差s=1(cm),则μ的置信度为0.90的置信区间是
设f(x)=arctanx,ξ为f(x)在区间[0,t]上满足拉格朗日中值定理的一个点,且已知0<t<1,求极限。
设随机变量x的绝对值不大于1,。在事件{一1<X<1}出现的条件下,X在区间(一1,1)内的任一子区间上取值的条件概率与该子区间的长度成正比。试求X的分布函数F(z)=P(X≤x)。
随机试题
下面关于哈希表的说法中,正确的是_______。
有关毒性反应的叙述正确的是( )。
在下列四个选项中,说法不正确的有()。
各种建筑构件空气声隔声性能的单值评价量是:
将叶轮与电动机的转子直联成一体,浸没在被输送液体中,属离心式泵的一种,又称为无填料泵,该泵为()。
自然人发现信息处理者违反法律、行政法规的规定或者双方的约定处理其个人信息的,有权请求信息处理者及时()。
人体在晚上分泌的镇痛荷尔蒙比白天多,因此,在晚上进行手术的外科病人需要较少的麻醉剂。既然较大量的麻醉剂对病人的风险更大,那么,如果经常在晚上做手术,手术的风险也就可以降低了。下列哪项如果为真,最能反驳上述结论?
WorkingMothersCarefullyconductedresearchesthathavefollowedthechildrenofworkingmothershavenotbeenabletoshow
Thescientificandmedicalprizeshaveprovedtobetheleast______,whilethoseforliteratureandpeacebytheirverynature
TheBusinessmanoftheCenturyLedbypeoplewhocouldtakeanideaandturnitintoanindustry,ourworldreachedunheard-
最新回复
(
0
)