首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的( )
设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的( )
admin
2018-07-26
50
问题
设α
1
,α
2
,α
3
均为3维向量,则对任意常数k,l,向量组α
1
+kα
3
,α
2
+lα
3
线性无关是向量组α
1
,α
2
,α
3
线性无关的( )
选项
A、必要非充分条件
B、充分非必要条件
C、充分必要条件
D、既非充分也非必要条件
答案
A
解析
1 记向量组(Ⅰ):α
1
+kα
3
,α
2
+lα
3
;
向量组(Ⅱ):α
1
,α
2
,α
3
.
(Ⅰ)是由(Ⅱ)线性表出的,写成矩阵形式即是:
[α
1
+kα
3
,α
2
+lα
3
]=[α
1
,α
2
,α
3
]
当(Ⅱ)线性无关时,矩阵[α
1
,α
2
,α
3
]为列满秩的,由于用列满秩阵左乘矩阵后,矩阵的秩不变,而矩阵
的秩为2,所以此时上式等号左边矩阵的秩也为2,也就是该矩阵的列秩为2,从而知向量组(Ⅰ)线性无关,所以,(Ⅰ)线性无关是(Ⅱ)线性无关的必要条件.
但(Ⅰ)线性无关不是(Ⅱ)线性无关的充分条件,例如当k=l=0时,(Ⅰ)线性无关即向量组α
1
,α
2
线性无关,却不能保证(Ⅱ)线性无关.
2 设有常数x
1
,x
2
,使得
x
1
(α
1
+kα
3
)+x
2
(α
2
+lα
3
)=0
即x
1
α
1
+x
2
α
2
+(x
1
k+x
2
l)α
3
=0,
若(Ⅱ)线性无关,则x
1
=x
2
=x
1
k+x
2
l=0,故由定义知(Ⅰ)线性无关.但若(Ⅰ)线性无关,(Ⅱ)却未必线性无关,例如α
1
=(1,0,0)
T
,α
2
=(0,1,0)
T
,α
3
=0,则(Ⅰ)线性无关,但(Ⅱ)却线性相关.因此,(Ⅰ)线性无关是(Ⅱ)线性无关的必要非充分条件.
转载请注明原文地址:https://kaotiyun.com/show/fHW4777K
0
考研数学三
相关试题推荐
设a>0,且函数f(x)在[a,b]上连续,在(a,b)内可导,试证:至少存在一点ξ∈(a,b)使得
求下列微分方程的通解或特解:
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
若β=(1,2,t)T可由α1=(2,1,1)T,α2=(-1,2,7)T,α3=(1,-1,-4)T线性表出,则t=_______.
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表出,则下列命题正确的是
已知α1=(1,2,3,4)T,α2=(2,0,-1,1)T,α3=(6,0,0,5)T,则向量组的秩r(α1,α2,α3)=_______,极大线性无关组是_______.
设A,B均为n阶矩阵,|A|=2,|B|=-3,求(Ⅰ)|2A*B-1|;(Ⅱ)||2A*|BT|.
已知A,B,C都是行列式值为2的3阶矩阵,则D==_______.
曲线y=的渐近线方程为_______.
设矩阵A=,行列式|A|=-1,又A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c及λ0的值.
随机试题
患者,发作性胸痛1年,近10天来胸痛频作,痛剧彻心,连及左侧肩背,伴有身寒肢冷,喘息不得卧,舌苔白,脉象沉紧。选方为
A.N–氧化物B.N–羟基化合物C.环氧化物D.硫醚E.砜亚砜类药物经还原生成()。
根据《建筑法》规定,建筑工程主体结构的施工()。
某场地软弱土层厚20m,采用水泥土桩进行地基加固,初步方案为面积置换率m=0.2,桩径d=0.5m,桩长l=10m,水泥掺合量取18%,经计算后沉降约20cm,为将工后沉降控制在15cm以内,需对初步方案进行修改,()最有效。
建设工程项目施工成本管理最根本、最重要的基础工作是()
细水雾灭火系统故障中稳压泵规定时间内不能恢复压力的处理办法不包括()。
某作家指控某杂志社侵犯其著作权,法院裁定作家胜诉,该作家取得杂志社的经济赔偿款40000元,该赔偿收入应缴纳个人所得税额( )元。
Consumersarebeingconfusedandmisledbythehodge-podgeofenvironmentalclaimsmadebyhouseholdproducts,accordingtoa"g
1,3,9,15,25,(),49,63,81
在局域网所出现的网络故障中,有75%都是由()引起。
最新回复
(
0
)