首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f+’(0)存
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f+’(0)存
admin
2019-01-05
69
问题
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a).
(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
=A,则f
+
’(0)存在,且f
+
’(0)=A.
选项
答案
(1)作辅助函数φ(x)=f(x)一f(a)一[*],易验证φ(x)满足: φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)-f(a)=f’(ξ)(b一a). (2)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在[*],使得 [*] 故f
+
’(0)存在,且f
+
’(0)=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/GZW4777K
0
考研数学三
相关试题推荐
设y=y(x)(x>0)是微分方程2y’’+y’一y=(4—6x)e-x的一个解,且.计算.
=________。
曲线的渐近线条数为().
设A为三阶实对称矩阵,若存在正交矩阵Q,使得且A*α=α.(I)求正交矩阵Q;(Ⅱ)求矩阵A.
微分方程的通解为___________.
设f(x)在[0,1]上二阶可导,|f’’(x)|≤1(x∈[0,1]),f(0)=f(1).证明:对任意的x∈[0,1],有.
求使得不等式在区域D=|(x,y)|x>0,y>0|内成立的最小正数A与最大负数B.
设平面区域D1={(x,y)||x|+|y|≤1},D2={(x,y)|x2+y2≤1},D3=则
设当x→x0时,f(x)不是无穷大,则下述结论正确的是()
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A
随机试题
施工企业的施工生产计划,以()为系统。
汽车营销人员在进行第二次电话沟通的时间以在7天之内为宜。()
A.凉血止血,解毒敛疮B.凉血止血,清肝泻火C.凉血止血,清热解毒D.凉血止血,化痰止咳E.凉血止血,清热安胎槐花具有的功效是()
提上睑肌缩短术治疗上睑下垂的适应症为提上睑肌功能尚未完全丧失,肌力
不能由CT机传输的是
女性,18岁。发热伴鼻出血5日。查体全身淋巴结肿大,皮肤散在出血斑,肝肋下2cm,脾肋下3cm,血红蛋白80g/L,白细胞12×109/L。血小板40×109/L,骨髓增生话跃,原始细胞占0.80,过氧化物酶染色阴性,非特异性酯酶阴性。首选治疗方案
教育目的的全面性决定了教师教学任务的多样性.两者与劳动对象的差异性共同构成了教师劳动()的三个方面。
下述哪种物质在炎症的疼痛中起重要作用
【】是插在其他报表中的报表。
Thedecisiontomoveisalsoinfluencedby"personalfactors"ofthepromisingmigrant.Thesamepush-pullfactorsandobstacl
最新回复
(
0
)