首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f+’(0)存
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f+’(0)存
admin
2019-01-05
102
问题
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a).
(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
=A,则f
+
’(0)存在,且f
+
’(0)=A.
选项
答案
(1)作辅助函数φ(x)=f(x)一f(a)一[*],易验证φ(x)满足: φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)-f(a)=f’(ξ)(b一a). (2)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在[*],使得 [*] 故f
+
’(0)存在,且f
+
’(0)=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/GZW4777K
0
考研数学三
相关试题推荐
=__________.
设随机变量X的分布律为P(X=k)一p(1-p)k-1(k=1,2,…),y在1~k之间等可能取值,求P{Y=3).
设某工厂产甲、乙两种产品,设甲、z,N种产品的产量分别为x和y(吨),其收入函数为R=15x+34y—x2一2xy一4y2一36(万),设生产甲产品每吨需要支付排污费用1万,生产乙产品每吨需要支付排污费用2万.当排污总费用为6万时,这两种产品产量各多少
设A为m×n矩阵,且.证明方程组AX=b有且仅有n一r+1个线性无关解;
求幂级数的收敛区域与和函数.
设的解向量,且AX=α3有解.(I)求常数a,b的值.(Ⅱ)求BX=0的通解.
已知随机变量X的概率密度386(I)求分布函数F(x);(Ⅱ)若令y=F(X),求Y的分布函数FY(y).
积分∫aa+2πcosxln(2+cosx)dx的值
设X1,…,Xn为相互独立的随机变量,Sn=X1+…+Xn,则根据列维一林德贝格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,…,Xn【】
在四阶行列式中,取负号且包含因子a23和a31的项是_____.
随机试题
在Windows中,“开始”菜单“文档”选项中的文件可以是文本文件、Word文件,也可以是BMP文件或其他文件。()
肝性脑病患者禁用的灌肠液是
色甘酸钠抗变态反应的作用机制是
男性,44岁,有咳嗽、咳痰史5年,伴喘息,入院前3天因受寒咳嗽、喘加重,咳黄痰入院。入院时查体,桶状胸,叩诊过清音,肺肝浊音界右锁骨中线第7肋间,双肺干、湿性哕音及散在哮鸣音,肺功能:FEV1/FVC为56%,MVV60%,VC降低,RV/TLC为43%。
当感抗小于容抗时,则电压滞后电流,电路呈( )。
按CIF术语成交的合同,货物在运输途中因火灾被焚,应由()。
下列关于公积金个人住房贷款业务的职责分工的表述,正确的有()。
()已经成为了现代社会保障的核心内容。
新航路开辟后,导致欧洲封建主收入下降的原因是()。
Ifartseekstodivorceitselffrommeaningfulandassociativeimages,ifitholdsmaterialaloneasitsobjective,thenIthink
最新回复
(
0
)