首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求作一个齐次线性方程使得它的解空间由下面四个向量所生成 α1=[-1,-1,1,2,0]T,α2=[-1/2,-1/2,1/2,6,4]T, α3=[1/4,0,0,5/4,1]T,α4=[-1,-2,2,9,4]T。
求作一个齐次线性方程使得它的解空间由下面四个向量所生成 α1=[-1,-1,1,2,0]T,α2=[-1/2,-1/2,1/2,6,4]T, α3=[1/4,0,0,5/4,1]T,α4=[-1,-2,2,9,4]T。
admin
2019-07-24
26
问题
求作一个齐次线性方程使得它的解空间由下面四个向量所生成
α
1
=[-1,-1,1,2,0]
T
,α
2
=[-1/2,-1/2,1/2,6,4]
T
,
α
3
=[1/4,0,0,5/4,1]
T
,α
4
=[-1,-2,2,9,4]
T
。
选项
答案
解 因[*] 故α
1
,α
2
线性无关,α
3
,α
4
可由α
1
,α
2
线性表出。 令[*],求BX=0的基础解系,由于 [*] 故BX=0的一个基础解系为 β
1
=[0,1,1,0,0]
T
, β
2
=[-5,7,0,1,0]
T
, β
3
=[-4,4,0,0,1]
T
, 于是,所求的齐次线性方程组的系数矩阵为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Cuc4777K
0
考研数学一
相关试题推荐
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶线性常系数齐次微分方程是()
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
设A为m×n矩阵,对于齐次线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0,必有()
随机试题
在法定退伙情形中,如果合伙人被依法宣告为无民事行为能力人,退伙生效的时间为
简述《庄子》一书的主要艺术特色与历史地位。
A.耐受性B.成瘾性C.反跳现象D.戒断症状E.急性中毒长期应用地西泮须加大剂量才产生原有的催眠效果,这是产生了
降压反射的生理意义是()。
关于解放思想和实事求是的辩证关系,下列表述正确的是()。
我们要创造条件,使知识分子的才能充分地_________。填入划横线部分最恰当的一项是()。
Misfortunemaybeanactualblessing.
求级数的收敛域及和函数。
Ishalltellyouwhathe______atthreeo’clockyesterdayafternoon.
Scientificknowledgeisbasedonverifiableevidence.Byevidencewemeanconcretefactualobservationswhichotherobserversca
最新回复
(
0
)