首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
admin
2018-11-22
98
问题
设矩阵A=(a
1
,a
2
,a
3
,a
4
),其中a
2
,a
3
,a
4
线性无关,a
1
=2a
2
-a
3
,向量b=a
1
+a
2
+a
3
+a
4
,求方程组Ax=b的通解。
选项
答案
已知a
2
,a
3
,a
4
线性无关,则r(A)≥3。又由a
1
,a
2
,a
3
线性相关可知a
1
,a
2
,a
3
,a
4
线性相关, 故r(A)≤3。 终上所述,r(A)=3,从而原方程组的基础解系所含向量个数为4-3=1。又因为 a
1
=2a
2
-a
3
[*] a
1
-2a
2
+a
3
=0[*](a
1
,a
2
,a
3
,a
4
)[*]=0, 所以x=(1,-2,1,0)
T
是方程组Ax=0的基础解系。 又由b=a
1
+a
2
+a
3
+a
4
可知x=(1,1,1,1)
T
是方程组Ax=b的一个特解。 于是原方程组的通解为 x=(1,1,1,1)
T
+c(1,-2,1,0)
T
,c∈R。
解析
转载请注明原文地址:https://kaotiyun.com/show/gIM4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
求二重积分|x2+y2一x|dxdy,其中D:{(x,y)|0≤y≤1—x,0≤x≤1}.
设A是n阶矩阵,下列结论正确的是().
设A为三阶矩阵,令P1=,将A的第一、二两行对调,再将A的第三列的2倍加到第二列成矩阵B,则B等于().
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x3+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.(Ⅰ)求常数a,b;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|=1时,求二次型
三元一次方程组所代表的三个平面的位置关系为()
以yOz坐标面上的平面曲线段y=f(x)(0≤z≤h)绕z轴旋转所构成的旋转曲面和xOy坐标面围成一个无盖容器,已知它的底面积为16πcm2,如果以3cm3/s的速率把水注入容器,水表面的面积以πcm2/s增大,试求曲线y=f(z)的方程.
求下列平面上曲线积分其中L是椭圆周,取逆时针方向.
设f(μ)连续可导,且∫04f(μ)du=2,L为半圆周y=,起点为原点,终点为B(2,0),则I=∫Lf(x2+y2)(xdx+ydy)=_________.
随机试题
政党政治运作的环节。
马克思主义是科学理想信念的理论基础。
患者,男,16岁。煤气中毒后一个月,突发昏仆,肢体抽搐,口吐涎沫,约5分钟后神志转清,自述疲乏,舌苔白腻,脉象弦滑。该病例中医治法应为
治疗治疗乳痈宜选用的药物是
枕骨大孔疝的救治原则()
下列关于法的特征的表述,哪个选项是正确的?()
我国实行的开放政策使国内城市与城市之间、南方与北方之间、内地与沿海之间展开了多种多样的吸引外资的竞争,导致了一些省份原先获得的区域倾斜政策优势(如减税、退税、低税、优惠贷款等)减弱,从而增加了国内利用外资的竞争。这段话主要支持了这样一种观点,即(
互联网的快速发展为公民通过网络参与政治生活提供了极其便利的条件,以网络为媒介的“政府民间”互动模式已成为我国政治文明的重要元素。“政府-民间”互动模式()。①方便了公民商接管理同家事务②保障了人民群众对政府的质询权
ThusthemostlogicalapproachistofocusouranalysisonthetraderelationsofSpainwithotherEuropeancountries.
(2014年真题)甲路过某饭馆时见万某酩酊大醉,便冒充万某的朋友上前将其扶走,到一偏僻的地方后,将万某随身携带的价值5000元的财物全部取走。甲的行为构成
最新回复
(
0
)