首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
admin
2018-11-22
65
问题
设A为n阶矩阵,α
1
为AX=0的一个非零解,向量组α
2
,…,α
s
满足A
i-1
α
i
=α
1
(i=2,3,…,s).证明α
1
,α
2
,…,α
s
线性无关.
选项
答案
设c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0(1),要推出系数c
i
都为0.条件说明A
i
α
i
=Aα
1
=0(i=1,2,3,…,s). 用A
s-1
乘(1)的两边,得c
s
α
1
=0,则c
s
=0. 再用A
s-2
乘(1)的两边,得c
s-1
α
1
=0,则c
s-1
=0.这样可逐个得到每个系数都为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/YIM4777K
0
考研数学一
相关试题推荐
设X1,X2,…,Xn(n>2)相互独立且都服从N(0,1),Yi=Xi一(i=1,2,…,n).求(Ⅰ)D(Yi)(i=1,2,…,n);(Ⅱ)Cov(Y1,Yn);(Ⅲ)P{Y1+Yn≤0}.
椭球面∑1是椭圆L:相切的直线绕z轴旋转而成.(Ⅰ)求∑1及∑2的方程;(Ⅱ)求位于∑1及∑3之间的立体体积.
设f(x)在[0,1]上连续,在(0,1)内可导,且=2.证明:(Ⅰ)存在c∈(0,1),使得f(c)=0;(Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ);(Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
函数f(x)=|xsinx|ecosx,一∞<x<+∞是().
设f(x)在[a,b]上连续,f(a)=f(b)=0,且fˊ+(a)<0,fˊ-(b)<0,证明:f(x)在(a,b)内必有一个零值点.
求解线性方程组
求一个正交变换把二次曲面的方程3χ2+5y2+5z2+4χy-4χz-10yz=1化成标准方程.
当掷一枚均匀硬币时,问至少应掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.9?试用切比雪夫不等式和中心极限定理来分别求解.
(02年)设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
设A为n阶实对称矩阵,其秩为r(A)=r.举一个三阶矩阵说明对非对称矩阵上述命题不正确.
随机试题
根据《公路工程造价管理暂行办法》,初步设计概算静态投资部分的最高限额是()。
劳动权利能力
SurvivingIllnessAwayFromHomeBeingillisahorriblethingatthebestoftimes,butwhatisevenworseiswhenyouare
菲德勒将领导权变理论具体化的几个方面是()
治疗多发性抽搐症阴虚风动证的首选方剂为()
女,38岁,接触性出血1个月余,白带有恶臭,妇科检查,宫颈Ⅱ度糜烂,前唇有质地脆赘生物,易出血。子宫正常大,三合诊(一)。最可能的诊断是
已满14周岁不满16周岁的人实施下列哪些行为应当承担刑事责任?()(2006/2/51)
一项工程,甲单独做40天完成,乙单独做60天完成,现在两人合作,中间甲因病休息了若干天,所以经过了27天才完成。则甲休息了()天。
法理学与部门法的关系是什么关系()
程序是一个窗体双击事件代码,窗体的名称是Mywindow。窗体上有一个名为text1的文本框,用来显示文本。程序段首先在文本框中显示“窗体能够触发双击事件”然后将该文本清除;重复上述过程5次。OptionExplicitPriva
最新回复
(
0
)