首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3 (Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值; (Ⅲ)求可逆矩阵P,使得P
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3 (Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值; (Ⅲ)求可逆矩阵P,使得P
admin
2020-03-16
51
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
(Ⅰ)求矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B;
(Ⅱ)求矩阵A的特征值;
(Ⅲ)求可逆矩阵P,使得P
一1
AP为对角矩阵.
选项
答案
(Ⅰ)由题设条件,有 A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
) =(α
1
,α
2
,α
3
)[*] 所以,[*] (Ⅱ)因为α
1
,α
2
,α
3
是线性无关的三维列向量,可知矩阵C=(α
1
,α
2
,α
3
)可逆,所以由AC=CB,得C
一1
AC=B,即矩阵A与B相似.由此可得矩阵A与B有相同的特征值, 由|λE 一B|=[*]=(λ一1)
2
(λ一4)=0 得矩阵B的特征值,也即矩阵A的特征值为λ
1
一λ
2
=1,λ
3
=4. (Ⅲ)对应于λ
1
=λ
2
=1,解齐次线性方程组(E一B)x=0,得基础解系 ξ
1
=(一1,1,0)
T
,ξ
2
=(一2,0,1)
T
; 对应于λ
3
=4,解齐次线性方程组(4E一B)x=0,得基础解系ξ
3
=(0,1,1)
T
. 令矩阵 Q= (ξ
1
,ξ
2
,ξ
3
)=[*] 则有 Q
一1
BQ=[*] 因Q
一1
BQ=Q
一1
C
一1
ACQ=(CQ)
一1
A(CQ),记矩阵 P= CQ=(α
1
,α
2
,α
3
)[*] =(一α
1
+α
2
,一 2α
1
+α
3
,α
2
+α
3
) 则有P
一1
AP=Q
一1
BQ=diag(1,1,4),为对角矩阵,故P为所求的可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/Cz84777K
0
考研数学二
相关试题推荐
[2003年]设位于第一象限的曲线y=f(x)过点(√2,1/2),其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.已知曲线y=sinx在[0,π]上的弧长为l,试用l表示曲线y=f(x)的弧长s.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。计算PTDP,其中
设f(χ)=讨论函数f(χ)在χ=0处的可导性.
设函数u=f(x,y)具有二阶连续偏导数,且满足等式确定a,b的值,使等式通过变换ξ=x+ay,η=x+by可化简为
设函数y=y(x)满足条件求广义积分∫0+∞y(x)dx.
设A是n阶正定矩阵,E是n阶单位矩阵,证明:A+E的行列式大于1.
当x→0时,f(x)=3sinx—sin3x与cxk是等价无穷小,则()
设α≥5且为常数,则k为何值时极限存在,并求此极限值.
设a>0,x1>0,且定义xn-1=(n=1,2,…),证明:xn存在并求其值.
设f’(x)连续,f(0)=0,f’(0)≠0,F(x)=,且当x→0时,F(x)~xn,求n及f’(0).
随机试题
下列哪种激素的分泌不受腺垂体的控制
深度为15m的人工挖孔桩工程,()。
不符合终止经营定义的持有待售的非流动资产或处置组,其减值损失和转回金额及处置损益应当作为持续经营损益列报。()
住宅专项维修资金是指专项用于住宅()保修期满后的维修和更新、改造的资金。
【2012年烟台市市直】群体发展的最高阶段是()。
标志着我国剥削制度被消灭的历史事件是
中共十八届四中全会通过的《中共中央关于全面推进依法治国若干重大问题的决定》提出,坚持依法治国首先要坚持依宪治国,坚持依法执政首先要坚持依宪执政。中国特色社会主义政治最本质的特征、社会主义法治的最根本保证是()
=________.
微机的主机指的是_______。
SoapOperasAsoapoperaisaserialontelevisionorradio/whereeachepisodelinkstothenextepisode./Soyou’rea
最新回复
(
0
)