首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列二重积分: (Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1; (Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1; (Ⅲ)I=ydxdy,其中D由直线z=-2,y=0,y=2及曲线x=所围成.
求下列二重积分: (Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1; (Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1; (Ⅲ)I=ydxdy,其中D由直线z=-2,y=0,y=2及曲线x=所围成.
admin
2019-04-22
66
问题
求下列二重积分:
(Ⅰ)I=
,其中D为正方形域:0≤x≤1,0≤y≤1;
(Ⅱ)I=
|3x+4y|dxdy,其中D:x
2
+y
2
≤1;
(Ⅲ)I=
ydxdy,其中D由直线z=-2,y=0,y=2及曲线x=
所围成.
选项
答案
考察积分区域与被积函数的特点,选择适当方法求解. (Ⅰ)尽管D的边界不是圆弧,但由被积函数的特点知选用极坐标比较方便. D的边界线x=1及y=1的极坐标方程分别为 [*] 于是 [*] (Ⅱ)在积分区域D上被积函数分块表示,若用分块积分法较复杂.因D是圆域,可用极坐标变换,转化为考虑定积分的被积函数是分段表示的情形.这时可利用周期函数的积分性质. 作极坐标变换x=rcosθ,y=rsinθ,则D:0≤θ≤2π,0≤r≤1.从而 I=∫
0
2π
|3cosθ+4sinθ|dθ∫
0
1
.rdr =[*]∫
0
2π
sin(θ+θ
0
)|dθ, 其中sinθ
0
=[*],cosθ
0
=[*].由周期函数的积分性质,令t=θ+θ
0
就有 [*] (Ⅲ)D的图形如图8.27所示.若把D看成正方形区域挖去半圆D
1
,则计算D
1
上的积分自然选用极坐标变换.若只考虑区域D,则自然考虑先x后y的积分顺序化为累次积分.若注意D关于直线y=1对称,选择平移变换则最为方便. 作平移变换u=x,v=y-1,注意曲线[*] 即x
2
+(y-1)
2
=1,x≤0,则D变成D’. D’由u=-2,v=-1,v=1,u
2
+v
2
=1(u≤0)围成,则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/lkV4777K
0
考研数学二
相关试题推荐
设f(x)在x=a处二阶可导,则等于().
已知A是三阶矩阵,r(A)=1,则λ=0()
设f(χ)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(χ)的带拉格朗日余项的麦克劳林公式。(2)证明:存在ξ1,ξ2∈[-a,a],使得
设矩阵A,B满足A*BA=2BA-8E,且A=,则B=_______.
设A为m×n阶矩阵,且r(A)=m<n,则().
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
矩阵的非零特征值是a3=_______.
设矩阵A=,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
[2010年]求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值.
随机试题
Thisspecialschoolacceptsalldisabledstudents,______educationallevelandbackground.
与颈椎及颈髓扫描参数不符的是
老年妇女,在过马路时,不慎跌倒,然后勉强爬起,但主诉腰痛,难于直立步行。体检:L5腰椎有轻压痛。该病例如明确诊断急需做何种检查
根据流变学性质,可将非牛顿流体的流动分为()
患儿男,5岁,猩红热病后20天,出现眼睑水肿,尿呈茶色,血压130/100mmHg,护士考虑该患儿可能发生了
下列关于工程质量检验评定制度的叙述中,不正确的是()。
会计职业道德的调整对象是()。
某普通住宅项目的建设单位委托招标代理机构,采用公开招标的方式办理该项目的招标事宜。公布招标信息后,在投标截止时间内,收到A、B、C、D、E、F共6家施工企业的投标文件,施工企业G的投标文件晚了一天送,已向招标人作出书面解释。各施工企业均按招标文件的规定提供
脑科学的研究表明,在人脑的发育中存在“关键期”,即人在发展过程中,某一方面在某一阶段发展得最快,比如,3岁以前是动作发展的“关键期”,1~3岁是语言发展的“关键期”,4岁左右是感知图形的“关键期”。在这一时期,脑在结构和功能上都具有很强的适应和重组的能力,
Hemusthavehadanaccident,orhe______herethen.
最新回复
(
0
)