首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解. 求方程组AX=0的通解.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解. 求方程组AX=0的通解.
admin
2019-04-22
97
问题
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
皆为AX=0的解.
求方程组AX=0的通解.
选项
答案
因为(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
线性无关,所以方程组AX=0的通解为X=k
1
(1,-2,1,2)
T
+k
2
(1,0,5,2)
T
+k
3
(-1,2,0,1)
T
(k
1
,k
2
,k
3
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/PxV4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
判断下面级数的敛散性:
细菌的增长率与总数成正比.如果培养的细菌总数在24h内由100增长到400,求前12h后的细菌总数.
求微分方程y"+4y’+4y=e-2x的通解.
设矩阵A=相似于对角矩阵.(1)求a的值;(2)求一个正交变换,将二次型f(x1,x2,x3)=xTAx化为标准形,其中x=(x1,x2,x3)T.
已知对于n阶方阵A,存在自然数k,使得Ak=O.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B,证明:B可逆,并推导A-1和B-1的关系.
设(Ⅰ)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(-1,0,1,0)T,ξ3=(0,1,1,0)T是(Ⅰ)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,-1,0)T是(Ⅱ)的一个基础解系.求(Ⅰ)和(Ⅱ)公共解.
已知线性方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2…,bn,2n)T.试写出线性方程组的通解,并说明理由.
随机试题
起动型铅蓄电池常用的充电方法有_______、_______和_______等几种。
通过测量发现管/地电位正负极性交变时,且环境腐蚀性较强,应采用()保护措施。
肾肿瘤病人的护理诊断。
发生危机后才开始进行政策的分析,匆忙提出建议,犯下一知半解、生搬硬套的错误。这种错误属于()
清代由军机处直接下达的机密指令,不经过内阁,由军机处封缄严密后,或直接交职能机构办理,或直接寄送地方官员,这种谕旨下达方式是()
注意缺陷障碍以_________、_________、_________。
某患者因急性胰腺炎拟行急诊手术,下列护理措施不妥的是()。
背景资料某住宅楼工程,场地占地面积约10000m2,建筑面积约14000m2。地下2层,地上16层,层高2.8m,檐口高47m,结构设计为筏板基础,剪力墙结构。施工总承包单位为外地企业,在本项目所在地设有分公司。本工程项目经理组织编制了项目施工组织设计
凡是违反道德的行为,都是违法行为。()
有如下两个类定义:classXX{private:doublex1;protected:doublex2;public:doublex3;};
最新回复
(
0
)