首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:若单调数列{xn}有一收敛的子数列,则数列{xn}必收敛.
证明:若单调数列{xn}有一收敛的子数列,则数列{xn}必收敛.
admin
2015-08-14
57
问题
证明:若单调数列{x
n
}有一收敛的子数列,则数列{x
n
}必收敛.
选项
答案
记数列{y
n
}为单调数列{x
n
}的收敛子数列,因为单调数列{x
n
}的子数列{y
k
}也一定是单调数列.由于收敛的单调数列必有界,所以数列{y
k
}一定有界.即存在实数A和B,对一切k成立A<y
k
<B.由于数列{y
k
}是单调数列{x
n
}的收敛子数列,所以存在N,当n>N时,有x
n
≥y
1
,则A<x
n
<B.又根据单调有界数列必收敛的原理可知,数列{x
n
}必收敛.
解析
转载请注明原文地址:https://kaotiyun.com/show/D034777K
0
考研数学二
相关试题推荐
e-1
-1/4
设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在,n维非零列向量α,β,使得A=αβT.
设α是n维单位列向量,A=E-αT.证明:r(A)<n.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明:PQ可逆的充分必要条件是αTA-1α≠b.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由口α1,α2,…,αn线性表示.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
随机试题
LastFriday,afterdoingallthefamilyshoppinginthetown.Iwantedtohavearestbeforecatchingtherain.I【C1】______anew
某家庭预计今后15年内月收人为10000元,如果其中的35%可以用于支付住房抵押贷款的月还款。已知贷款年利率为12%,则该家庭有偿还能力的15年期最大抵押贷款申请额是()万元。[2005年考题]
根据《商业银行金融创新指引》的规定,商业银行应充分认识到金融创新与风险管理密不可分,风险管理是金融创新的内在要求。()
()是货币市场上最敏感的“晴雨表”。
作为人,在自己的一生中,第一要义当然是要好好活着,___________自己的家人,在力所能及的情况下帮助旁人,但又要有___________,在关键时刻和关键问题面前,能尽责任。填入划横线部分最恰当的一项是()。
________是实现人的全面发展的唯一途径。
设f(x)是[a,b]上的连续函数,且对于满足∫abg(x)dx=0的任意连续函数g(x),都有∫abf(x)g(x)dx=0。证明:存在ξ∈[a,b]使得f(x)=f(ξ)恒成立。
已知圆的方程为x2+y2一6x一8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()
由风险资本家融资的初创公司比通过其他渠道融资的公司失败率要低。所以,与诸如企业家个人素质、战略规划质量或公司管理结构等因素相比,融资渠道在初创公司的成功上是更重要的原因。以下哪项如果为真,最严重地削弱了上述结论?()
要在一块边长为48米的正方形地里种树苗,已知每横行相距3米,每竖行相距6米,四角各种一棵树苗。问一共可种多少棵树苗?()
最新回复
(
0
)