首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设f(t)=∫0tex2dx,求∫01t2f(t)dt. (2)设f(x)=∫0xecostdt,求∫0πf(x)cosxdx.
(1)设f(t)=∫0tex2dx,求∫01t2f(t)dt. (2)设f(x)=∫0xecostdt,求∫0πf(x)cosxdx.
admin
2019-09-04
54
问题
(1)设f(t)=∫
0
t
e
x
2
dx,求∫
0
1
t
2
f(t)dt.
(2)设f(x)=∫
0
x
e
cost
dt,求∫
0
π
f(x)cosxdx.
选项
答案
(1)∫
0
1
t
2
f(t)dt=[*]∫
0
1
f(t)d(t
3
)=[*]f(t) |
0
1
-[*]∫
0
1
t
3
e
t
2
dt, 因为f(1)=0,所以 ∫
0
1
t
2
f(t)dt=[*]∫
0
2
t
3
e
r
2
dt=[*]∫
0
1
t
2
e
t
2
d(t
2
) =[*]∫
0
1
xe
x
dx=[*]sin
3
xdx=[*], (2)∫
0
π
f(x)cosxdx=∫
0
π
f(x)d(sinx)=f(x)sinx|
0
π
-∫
0
π
f’(x)sinxdx =-∫
0
π
f’(x)sinxdx=-∫
0
π
e
cosx
sinxdx=∫
0
π
e
cosx
d(cosx) =e
cosx
|
0
π
=e
-1
-e.
解析
转载请注明原文地址:https://kaotiyun.com/show/D4J4777K
0
考研数学三
相关试题推荐
设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)可由α1,α2,α3惟一地线性表示,并求出表示式;(3
设矩阵矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,a+2)T.α4=(-2,-6,10,a)T.(1)a为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;(2)
已知下列非齐次线性方程组(Ⅰ),(Ⅱ):当(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.
求函数f(x,y)=x2+y2一12x+16y在区域D={(x,y)|x2+y2≤25}上的最大值和最小值.
设二维随机变量(X,Y)在区域D={(x,y)|1≤x≤e2,0≤y≤}上服从均匀分布,则(X,Y)的关于X的边缘概率密度fX(x)在点x=e处的值为________.
由曲线y=x3,y=0及x=1所围图形绕x轴旋转一周得到的旋转体的体积为________.
设f(x)=∫0xecostdt.求∫0πf(x)cosxdx.
求∫arcsunxarccosxdx.
随机试题
阅读下列案例,并回答问题。年轻的黄老师每次教完生字后,总是让学生回去把每个生字抄10遍,准备第二天听写,但学生的生字听写成绩总是不理想。黄老师想,肯定是抄写不够,又让学生每个生字抄20遍甚至30遍,但学生的听写成绩仍没有明显提高。黄老师逐渐意识到,学生学习
下列哪项属于子宫内膜的周期性变化
可确诊慢性淋巴细胞白血病的方法是
(抗高血压药物)A、缬沙坦B、吲达帕胺C、美托洛尔D、尼卡地平E、赖诺普利属于血管紧张素转换酶抑制剂的是
2014年下半年,实行标准工时制的甲公司在劳动用工方面发生下列事实:(1)9月5日已累计工作6年且本年度从未请假的杨某向公司提出年休假申请。(2)因工作需要,公司安排范某在国庆期间加班4天,其中占用法定休假日3天,占用周末休息日1天。范某日工资为200
在小学教学评价中,衡量学校办学水平的关键指标是()。
货币制度(浙江财经大学2012真题;东南大学2012真题;华南理工大学2011真题)
Ifyouweretoexaminethebirthcertificatesofeverysoccerplayerin2006’sWorldCuptournament,youwouldmostlikelyfind
Readfivestudents’talksabouttravelingaroundEuropeusinganInter-Railticket.Theticketallowspeopleundertheageoft
Thefactthattheworld’scitiesaregettingmoreandmorecrowdedisawell-documenteddemographicfact.CitiessuchasTokyo
最新回复
(
0
)