首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时, (1)β不能由α1,α2,α3线性表示; (2)可由α1,α2,α3惟一地线性表示,并求出表示式; (3
设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时, (1)β不能由α1,α2,α3线性表示; (2)可由α1,α2,α3惟一地线性表示,并求出表示式; (3
admin
2018-07-26
65
问题
设有向量α
1
=(1,2,0)
T
,α
2
=(1,a+2,-3a)
T
,α
3
=(-1,-b-2,a+2b)
T
,β=(1,3,-3)
T
.试讨论当a、b为何值时,
(1)β不能由α
1
,α
2
,α
3
线性表示;
(2)可由α
1
,α
2
,α
3
惟一地线性表示,并求出表示式;
(3)β可由α
1
,α
2
,α
3
线性表示,但表示式不惟一,并求出表示式.
选项
答案
设有一组数x
1
,x
2
,x
3
,使得 x
1
α
1
+x
2
α
2
+x
3
α
3
=β (*) 对方程组(*)的增广矩阵施行初等行变换: [*] (1)当a=0,b为任意常数时,有 [*] 可知r(A)≠r([*]),故方程组(*)无解,β不能由α
1
,α
2
,α
3
线性表示. (2)当a≠0,且a≠b时,r(A)=r([*])=3,方程组(*)有唯一解:x
1
=1-[*],x
2
=1/a,x
3
=0.故此时β可由α
1
,α
2
,α
3
唯一地线性表示为:β=(1-[*]α
2
. (3)当a=b≠0时,对[*]施行初等行变换: [*] 可知r(A)=r([*])=2,故方程组(*)有无穷多解,通解为:x
1
=1-[*]+C,x
3
=C,其中C为任意常数.故此时β可由α
1
,α
2
,α
3
线性表示,但表示式不唯一,其表示式为β=(1-[*]+C)α
2
+Cα
3
,其中C为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/RTW4777K
0
考研数学三
相关试题推荐
求A=的特征值与特征向量.
设随机变量X与Y独立,且,Y~N(0,1),则概率P{XY≤0}的值为
证明不等式:
求y’’+4y’+4y=eax的通解,其中a为常数.
求下列二阶常系数齐次线性微分方程的通解:(Ⅰ)2y’’+y’-y=0;(Ⅱ)y’’+8y’+16y=0;(Ⅲ)y’’-2y’+3y=0.
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
已知A,B,C都是行列式值为2的三阶矩阵,则D=________。
设(I)求f’(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令考察f’(xn)是正的还是负的,n为非零整数;(Ⅳ)证明:对,f(x)在(一δ,0]上不单调上升,在[0,8]上不单调下降.
随机试题
A.长期禁食、低钾血症B.消化道功能基本正常,病情严重而不能进食者C.急性肾衰竭、水中毒D.休克晚期DIC患者E.消化与吸收功能障碍,病情严重者胃肠内营养支持适宜
我国《刑法》第240条规定,如果拐卖妇女并强迫被拐卖的妇女卖淫的,处10年以上有期徒刑或者无期徒刑。这一规定属于()的立法规定。
案例某日8时40分,新疆某煤矿井下发生较大火灾和瓦斯爆炸事故,造成6人死亡、8人重伤,直接经济损失1490万元。该矿建设规模为9×104t/a,低瓦斯矿井,煤尘具有爆炸性,煤层自然发火倾向性鉴定结果为自燃煤层。事故发生在早上6时多,井口
()是指预算有效期为几年(多为三年至五年)的政府预算。
四级医疗事故是直因医务人员过失,造成下列情况之一()。
新的社区建设工作体系是()
简述教育实验的基本类型。
若=5,则a=_______,b=_______。
Let’sbeginwiththissingle-questionexamination:Whatpercentageofcareer-orientedhighschoolseniorsareproficientin
程序设计语言通常分为
最新回复
(
0
)