首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
有甲、乙、丙三个口袋,其中甲口袋装有1个红球,2个白球,2个黑球;乙袋装有2个红球,1个白球,2个黑球;丙袋装有2个红球,3个白球。现任取一袋,从中任取2个球,用X表示取到的红球数,Y表示取到的白球数,Z表示取到的黑球数,试求: (Ⅰ)(X,Y)的联合分布
有甲、乙、丙三个口袋,其中甲口袋装有1个红球,2个白球,2个黑球;乙袋装有2个红球,1个白球,2个黑球;丙袋装有2个红球,3个白球。现任取一袋,从中任取2个球,用X表示取到的红球数,Y表示取到的白球数,Z表示取到的黑球数,试求: (Ⅰ)(X,Y)的联合分布
admin
2018-11-16
39
问题
有甲、乙、丙三个口袋,其中甲口袋装有1个红球,2个白球,2个黑球;乙袋装有2个红球,1个白球,2个黑球;丙袋装有2个红球,3个白球。现任取一袋,从中任取2个球,用X表示取到的红球数,Y表示取到的白球数,Z表示取到的黑球数,试求:
(Ⅰ)(X,Y)的联合分布;
(Ⅱ)cov(X,Y)+cov(Y,Z)。
选项
答案
方法一:(Ⅰ)用全概率公式求(X,Y),(Y,Z)的联合分布,即有 [*] 从而(X,Y)与(Y,Z)的联合分布与边缘分布可列表如下: [*] (Ⅱ) [*]于是cov(X,Y)+cov(Y,Z)=(EXY-EXEY)+(EYZ-EYEZ)=[*] 方法二:(Ⅰ)求(X,Y)的联合分布同方法一,但不求(Y,Z)的联合分布。 (Ⅱ)由Z=2-X-Y,故cov(X,Y)+cov(Y,Z)=cov(X,Y)+cov(Y,2-X-Y)=cov(X,Y)-cov(Y,X)-cov(Y,Y)=-DY又[*],故cov(X,Y)=cov(Y,Z)=-DX=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/D8W4777K
0
考研数学三
相关试题推荐
设函数y=y(x)由确定,则y=y(x)在x=1n2处的法线方程为________.
[*]
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得P{|一μ|≥2}≤________.
设随机变量X方差为2,则根据切比雪夫不等式有估计P{|X一E(X)|≥2)≤________.
设起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示中途下车人数.求在发车时有n个乘客的情况下,中途有m个乘客下车的概率;
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:两个球中一个是红球一个是白球;
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:二次型XTAX的标准形;
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=
随机试题
在国际竞争性招标过程中,从刊登招标广告或发售招标文件算起,给予投标商准备投标的时间不得少于()天。
不实行资本金制度的项目是()。
施工安全信息保证体系的工作内容包括:①信息收集;②确保信息工作条件;③信息处理;④信息服务。正确的工作顺序是()。
背景:某市一办公楼是6层内浇外砌砖混结构,总建筑面积6500m2。该工程1999年8月开工,2000年11月竣工。经市质量监督站核定达不到合格等级,建设单位委托法定检测单位检测,结论是:该楼内墙混凝土强度不满足设计要求,整栋房屋不满足8度抗震设防要求。
社会主义的本质是解放生产力,发展生产力,消灭剥削,消除两极分化,最终达到()。
设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且,证明(1)中的x0
微分方程(6x+y)dx+xdy=0的通解是_______
PresidentBarackObamaclaimedprogressWednesdayinhissecond-termdrivetocombatclimatechangebutsaidmoremustbedonet
设循环队列的存储空间为Q(1:100),初始状态为空。现经过一系列正常操作后,front=49,则循环队列中的元素个数为
Manyadelegatewasinfavorofhisproposalthataspecialcommittee______toinvestigatetheincident.
最新回复
(
0
)