首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
admin
2017-12-31
36
问题
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
选项
答案
设α
1
,…,α
n
为一个向量组,且α
1
,…,α
r
(r<n)线性相关,则存在不全为零的常数 k
1
,…,k
r
,使得k
1
α
1
+…+k
r
α
r
=0,于是k
1
α
1
+… +k
r
α
1
+0α
r+1
+…+0α
n
=0,因为 k
1
,…,k
r
,0,…,0不全为零,所以α
1
,α
n
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/DHX4777K
0
考研数学三
相关试题推荐
设相互独立的两个随机变量X,Y具有同一分布律,且X的分布律为:则随机变量Z=max{X,Y)的分布律为________.
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
证明:方阵A是正交矩阵,即AAT=E的充分必要条件是:(1)A的列向量组组成标准正交向量组,即或(2)A的行向量组组成标准正交向量组,即
证明:当x>0时,有
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(A)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(A)是极大值;当r(a,
设方阵A1与B1合同,A2与B2合同,证明:合同.
设c1,c2,…,cn均为非零实常数,A=(aij)m×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)m×n,证明矩阵B为正定矩阵。
设A为m×n实矩阵,E为n阶单位矩阵。已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵。
随机试题
血浆白蛋白正常参考值是
牙科铸造属于
以下说法中错误的有哪些?()
外汇主要包括()。
________又称为稳定性系数。
2014年全国粮食种植面积11274万公顷,比上年增加78万公顷。棉花种植面积422万公顷,减少13万公顷。油料种植面积1408万公顷,增加6万公顷。糖料种植面积191万公顷,减少9万公顷。粮食再获丰收。全国全年粮食产量60710万吨,比上年增加
Mostyoungpeopleenjoysomeformofphysicalactivity.Itmaybeagameofsome【B1】______—football,hockey,golf,ortennis.It
数字签名是通过()来实现的。
以下关于菜单的叙述中,错误的是()。
【B1】【B6】
最新回复
(
0
)