首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1*=xex+e2x,y2*=xex+e—x,y3*=xex+e2x—e—x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
已知y1*=xex+e2x,y2*=xex+e—x,y3*=xex+e2x—e—x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
admin
2017-08-18
77
问题
已知y
1
*
=xe
x
+e
2x
,y
2
*
=xe
x
+e
—x
,y
3
*
=xe
x
+e
2x
—e
—x
是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
选项
答案
易求得该微分方程相应的齐次方程的两个特解 y
1
*
—y
3
*
=e
—x
,y
2
*
—y
3
*
=2e
—x
—e
2x
. 进一步又可得该齐次方程的两个特解是 y
1
=e
—x
,y
2
=2(y
1
*
—y
3
*
)一(y
2
*
—y
3
*
)=e
2x
, 它们是线性无关的.为简单起见,我们又可得该非齐次方程的另一个特解 y
4
*
=y
1
*
—y
2
=xe
x
因此该非齐次方程的通解是 y=C
1
e
—x
+C
2
e
2x
+xe
x
,其中C
1
,C
2
为任意常数. 由通解结构易知,该非齐次方程是:二阶线性常系数方程 y’’+py’+qy=f(x). 它的相应特征根是λ
1
=一1,λ
2
=2,于是特征方程是 (λ+1)(λ一2)=0,即 λ
2
一λ一2=0. 因此方程为 y’’一y’一2y=f(x). 再将特解y
4
*
=xe
x
代入得 (x+2)e
x
—(x+1)e
x
—2xe
x
=f(x),即f(x)=(1—2x)e
x
因此方程为y’’—y’—2y=(1—2x)e
x
解析
转载请注明原文地址:https://kaotiyun.com/show/DIr4777K
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)的密度函数为求P{U2+V2≤1}.
设二维随机变量(X,Y)的密度函数为分别求U=X2和Y=Y2的密度函数f(v)和fv(v),并指出(U,V)所服从的分布;
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
设正项级数是它的部分和.证明收敛并求和;
设A是3阶矩阵,b=[9,18,一18]T,方程组Ax=b有通解k1[-2,1,0]T+k2[2,0,1]T+[1,2,一2]T,其中k1,k2是任意常数,求A及A100.
设证明级数收敛.
将函数展开成x一2的幂级数,并求出其收敛范围
A、发散B、条件收敛C、绝对收敛D、收敛性与a有关C
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
随机试题
In2013,NewYorkStateorderedstorestochargeadepositonbeverage(饮料)containers.Withinayear,consumershadreturnedmil
颞叶底部血肿,出血动脉是
某男性,40岁,寒战、弛张型高热半个月,伴有肝区痛,肝左叶肿大,压痛明显,病人有明显的黄疽,白细胞18×109/L,AFP阴性。超声波检查:左肝区4cm液性暗区,腹腔内有少量的腹腔积液。胆囊内有1.0cm×2.0cm结石,胆囊大,壁厚。本病最可能的诊
下列不属于药剂学的任务是
下列关于股份有限公司责任的说法中,正确的有()。Ⅰ.股东以自身财产对公司债务承担责任Ⅱ.公司以全部财产对公司债务承担责任Ⅲ.股东以认购股份对公司债务承担责任Ⅳ.公司以未分配利润对公司债务承担责任
学校是学生心理健康的主要场所。()
A.下颌骨内有单房阴影,四周有白色骨质线B.下颌骨体有大小不等的多房阴影C.颌骨内虫蚀状骨质破坏区,牙周骨质可有破坏D.下颌角见骨质疏松脱钙,并有骨质增生E.下颌骨体有骨质破坏,并有死骨形成中央性颌骨骨髓炎X线表现为()。
Susan:I’msogladtoseeyou,David.【K1】______hasbeensuchalongtime.Howareyou?David:I’mfine,andyou?Susan:I’mjus
1 Thereisanacceleratingtrendtowardgreaterrealisminmediacommunications.Thistrendcanbeattributedtotechnological
Thisisratherforyourmothertodecidethanforyou.
最新回复
(
0
)