首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1*=xex+e2x,y2*=xex+e—x,y3*=xex+e2x—e—x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
已知y1*=xex+e2x,y2*=xex+e—x,y3*=xex+e2x—e—x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
admin
2017-08-18
44
问题
已知y
1
*
=xe
x
+e
2x
,y
2
*
=xe
x
+e
—x
,y
3
*
=xe
x
+e
2x
—e
—x
是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
选项
答案
易求得该微分方程相应的齐次方程的两个特解 y
1
*
—y
3
*
=e
—x
,y
2
*
—y
3
*
=2e
—x
—e
2x
. 进一步又可得该齐次方程的两个特解是 y
1
=e
—x
,y
2
=2(y
1
*
—y
3
*
)一(y
2
*
—y
3
*
)=e
2x
, 它们是线性无关的.为简单起见,我们又可得该非齐次方程的另一个特解 y
4
*
=y
1
*
—y
2
=xe
x
因此该非齐次方程的通解是 y=C
1
e
—x
+C
2
e
2x
+xe
x
,其中C
1
,C
2
为任意常数. 由通解结构易知,该非齐次方程是:二阶线性常系数方程 y’’+py’+qy=f(x). 它的相应特征根是λ
1
=一1,λ
2
=2,于是特征方程是 (λ+1)(λ一2)=0,即 λ
2
一λ一2=0. 因此方程为 y’’一y’一2y=f(x). 再将特解y
4
*
=xe
x
代入得 (x+2)e
x
—(x+1)e
x
—2xe
x
=f(x),即f(x)=(1—2x)e
x
因此方程为y’’—y’—2y=(1—2x)e
x
解析
转载请注明原文地址:https://kaotiyun.com/show/DIr4777K
0
考研数学一
相关试题推荐
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2Aα3=8α1+6α2—5α3.求A的特征值和特征向量;
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,a)T,求矩阵A;
设f(x,y),φ(x,y)均有连续偏导数,点M0(x0,y0)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又φ’(x0,y0)≠0,求证:
设函数Fn(x)=其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:Fn(x)在(0,+∞)存在唯一零点x0;
设正项级数收敛,正项级数发散,则①必收敛.②必发散.③必收敛.④必发散.中结论正确的个数为()
(2004年试题,一)欧拉方程的通解为______________.
微分方程y’’+4y=cos2x的通解为y=__________.
设(Ⅰ)用变换x=t2将原方程化为y关于t的微分方程;(Ⅱ)求原方程的通解.
随机试题
下列关于肺的血液循环哪项是不正确的
口腔组织对射线平均耐受量约为6~8周给予()。
[2010年第67题]注册建筑师有下列哪种情形时,其注册证书和执业印章继续有效?
在非确定型决策中,若给每种可能的结果赋予相同的权数,然后计算各个方案在各种自然状态下损益值的加权平均数,并选加权平均数最大的方案作为比较满意的方案。这是运用()来决策的。
宽带式薪酬与传统薪酬结构相比具有的优点有()。
下列关于道德的表述,正确的是()。
Thenewpolicyhas______alargeamountofinvestmentforindustryandbusinessinthiscity.(2009年北京航空航天大学考博试题)
Whydoesthemangotoseehisprofessor?
A、Shecancancelitanytimebyfree.B、Shecantransfertheunusedminutestoanotherphone.C、Shehastosignanotheragreement
Forthispart,youareallowed30minutestowriteashortessay.Youshouldstartyouressaywithabriefdescriptionofthepi
最新回复
(
0
)