首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有通解k[1,0,2,一1]T,其中k是任意常数,A中去掉第i(i=1,2,3,4)列的矩阵记成Ai,则下列方程组中有非零解的方程组是 ( )
设有通解k[1,0,2,一1]T,其中k是任意常数,A中去掉第i(i=1,2,3,4)列的矩阵记成Ai,则下列方程组中有非零解的方程组是 ( )
admin
2014-04-23
42
问题
设
有通解k[1,0,2,一1]
T
,其中k是任意常数,A中去掉第i(i=1,2,3,4)列的矩阵记成A
i
,则下列方程组中有非零解的方程组是 ( )
选项
A、A
1
y=0.
B、A
2
y=0.
C、A
3
y=0.
D、A
4
y=0.
答案
B
解析
A
3×4
x=0有通解k[1,0,2,一1]
T
.
将A、B列分块,设A=[α
1
,α
2
,α
3
,α
4
],即有α
1
+0α
2
+2α
3
一α
4
=α
1
+2α
3
一α
4
=0,即A
2
y=0有非零解ξ=[1,2,一1]
T
,故应选B.
其余选项A,C,D均不成立.如A选项,若A成立,
即A
1
y=(α
2
,α
3
,α
4
)y=0有非零解,
设为(λ
1
,λ
2
,λ
3
)
则有λ
1
α
2
+λ
2
α
3
+λ
3
α
4
=0,即0α
1
+λ
1
α
2
+λ
2
α
3
+λ
3
α
4
=0,这和原方程组的通解k[1,0,2,一1]
T
矛盾.
故A不成立,C,D类似.
转载请注明原文地址:https://kaotiyun.com/show/7N54777K
0
考研数学一
相关试题推荐
设y1(x)和y2(x)是微分方程y“+p(x)y+q(x)y=0的两个特解,则由y1(x),y2(x)能构成该方程的通解的充分条件为()
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
利用初等行变换求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组线性表示:
求下列向量组的秩,并求一个最大无关组:
设向量组B:b1,b2,…,br能由向量组A:a1,a2,…,as线性表示为(b1,b2,…,br)=(a1,a2,…,as)K,其中K为s×r矩阵,且向量组A线性无关,证明向量组B线性无关的充分必要条件是矩阵K的秩R(K)=r.
设向量组a1,a2,a3,线性无关,判断向量组b1,b2,b3的线性相关性:b1=a1+a2,b2=2a2+3a3,b3=5a1+3a2.
设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.
判定下列向量组是线性相关还是线性无关:
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f’(x)>0,如果存在,证明:f(x)>0,x∈(a,b);
设A为m×n矩阵,则下列结论不对的是().
随机试题
奥斯丁认为法律的含义包括四个方面,下面不属于其含义的是
下列属于进口限制方法的有()
非晶硅探测器中把可见光转换成电荷的部件是
根据企业破产法律制度的规定,在重整期间,有关当事人的下列行为中,符合规定的是()。
纳税人建造普通标准住宅出售,增值额未超过扣除项目金额()的,免征土地增值税。
()是设备监理单位对所承揽的设备工程项目开展监理工作的总策划。
某工业引进项目,基础数据如下。1.项目的建设期为2年,该项目的实施计划为:第一年完成项目全部投资的40%,第二年完成60%,第三年项目投产并且达到100%设计生产能力,预计年产量为3000万吨。2.全套设备拟从国外进口,质量1850t,
企业拟投产一新项目,预计新项目产品的市场适销期为4年,新产品的生产可利用原有旧设备,该设备的原值220万元,税法规定的使用年限为6年,已使用1年,按年数总和法计提折旧,税法规定的残值为10万元。目前变现价值为150万元,4年后的变现价值为0。生产A产品需垫
不同学派关于法的性质有不同理解,对此,下列说法正确的是()(2018年一综一第6题、2018一法综一第1题)
A.littleB.unansweredC.detectD.inevitablyE.deepF.dropG.uselessH.eventuallyI.effectiveJ.addressK.catc
最新回复
(
0
)