首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,6)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,6)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
admin
2019-05-11
41
问题
已知α
1
=(1,1,0,2)
T
,α
2
=(-1,1,2,4)
T
,α
3
=(2,3,a,7)
T
,α
4
=(-1,5,-3,a+6)
T
,β=(1,0,2,6)
T
,问a,b取何值时,(Ⅰ)β不能由α
1
,α
2
,α
3
,α
4
线性表示?(Ⅱ)β能用α
1
,α
2
,α
3
,α
4
线性表出,且表示法唯一;(Ⅲ)β能用α
1
,α
2
,α
3
,α
4
线性表出,且表示法不唯一,并写出此时表达式.
选项
答案
设x
1
α
1
+x
2
α
2
+x
3
β
3
+x
4
α
4
=β,对增广矩阵(α
1
,α
2
,α
3
,α
4
:β)作初等行变换,有 [*] (Ⅰ)当a=1,b≠2或a=10,b≠-1时,方程组均无解.所以β不能由α
1
,α
2
,α
3
,α
4
线性表出. (Ⅱ)当a≠1且a≠10时,[*]方程组均有唯一解.所以β能用α
1
,α
2
,α
3
,α
4
线性表示且表示法唯. (Ⅲ)方程组在两种情况下有无穷多解,即(1)当a=10,b=-1时,方程组有无穷多解: x
4
=t,x
3
=t+[*],x
2
=[*],x
1
=[*] 即β=[*]α
3
+tα
4
. (2)当a=1,b=2时,方程组有无穷多解:x
4
=[*],x
2
=t,x
3
=1-2t,x
1
=5t-[*],即β=[*]α
1
+tα
2
+(1-2t)α
3
-[*]α
4
.
解析
转载请注明原文地址:https://kaotiyun.com/show/DNV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
设f(χ),g(χ)为[a,b]上连续的增函数(0<a<b),证明:∫abf(χ)dχ∫abg(χ)dχ≤(b-a)∫abf(χ)g(χ)dχ.
设三阶矩阵A的特征值为2,3,λ,若行列式|2A|=-48,则λ=_______.
设向量组线性相关,但任意两个向量线性无关,求参数t.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设α1,…,αm,β为m+1个n维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量.若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
设α1=,其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为
随机试题
FederalregulatorsWednesdayapprovedaplantocreateanationwideemergencyalert(警报)systemusingtextmessagesdeliveredtoc
诊断异位甲状腺用什么放射性核素显像最适宜
肺癌晚期,阴虚毒热,咯血不止时宜加
对中枢具有兴奋作用的药物是
缩窄性心包炎,一经确诊后治疗应是()
如果某药物的使用对于孕妇及哺乳期妇女的影响尚不明确,其药品说明书应注明
机电工程工序质量控制的方法包括()。
提高自主创新能力,建设创新型国家,是我国国家发展战略的核心,实施这一战略,需要加快实施国家中长期科技发展规划纲要,大力鼓励和提倡自主创新;深化科技体制改革,发挥企业在技术创新和创业投资发展过程中的主体作用;做强做大装备制造业;支持和推进高新技术的研发和产业
[2004年]设有齐次线性方程组试问a取何值时,该方程组有非零解?并求出其通解.
A、Thegoalsoftheemployees.B、Theobjectivesoftheorganization.C、Thestructureoftheorganization.D、Thepersonalprospect
最新回复
(
0
)