首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ2的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设A= (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ2的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2016-10-27
20
问题
设A=
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
2
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(Ⅰ)对增广矩阵(A[*]ξ
1
)作初等行变换,有 [*] 得Ax=0的基础解系(1,一1,2)
T
和Ax=ξ
1
的特解(0,0,1)
T
. 故ξ
2
=(0,0,1)
T
+k(1,一1,2)
T
或ξ
2
=(k,一k,2k+1)
T
,其中k为任意常数. 因为A
2
=[*],对增广矩阵(A
2
[*]ξ
1
)作初等行变换,有 [*] 得A
2
x=0的基础解系(一1,1,0)
T
,(0,0,1)
T
.又A
2
x=ξ
1
有特解([*],0,0)
T
,故 [*] 其中t
1
,t
2
为任意常数. (Ⅱ)因为 [*] 所以ξ
1
,ξ
2
,ξ
3
必线性无关.
解析
其实求ξ
2
和ξ
3
就是分别求方程组Ax=ξ
1
与方程组A
2
x=ξ
1
的通解.
转载请注明原文地址:https://kaotiyun.com/show/DTu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
当a取下列哪个值时,函数,(x)=2x3-9x2+12x-a恰有两个不同的零点.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(I)的逆命题成立.
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
(2009年试题,21)设二次型f(x1,x2,x3)=a22+a22+(a一1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
(2007年试题,17)求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0}上的最大值和最小值.
设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且
随机试题
以融资租赁方式租入的固定资产,在会计核算上将其视为承租企业的资产,遵循的会计信息质量要求是()
亚急性甲状腺炎与甲状腺结核病的区别主要是
量化是指将连续变化的灰度或密度等模拟信息,转化成离散的数字信息的过程,有关量化的描述,正确的是
三组比较的秩和检验,样本例数均为6,确定P值时应查
患慢性消耗性疾病时,最早发生萎缩的组织是
质量为m的小物块在匀速转动的圆桌上,与转轴的距离为r,如图所示。设物块与圆桌之间的摩擦系数为μ,为使物块与桌面之间不产生相对滑动,则物块的最大速度为()。
某投资者2010年年初投资100元,半年后得到105元,如果再将这105元投资半年,假设同样获得半年5%的收益率,则其年百分比收益率为()
甲公司为上市公司,内审部门在审核公司2×16年度的财务报表时,对以下交易或事项的会计处理提出质疑。(1)2×16年9月1日,经董事会批准,甲公司的母公司实施一项股权激励计划,其主要内容为:甲公司的母公司向甲公司的50名管理人员每人授予1万份现金股票增值权
建立E-R模型正确的步骤是()。①确定实体②设计出E-R图所表示的概念模型③确定实体之间的联系类型④确定相关实体的属性
Wemodempeopleeatnotonlywhenwearehungrybutalsowhenweareinbadmood.Peopleconsumemoreandmorecaloriestomake
最新回复
(
0
)