首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ2的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设A= (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ2的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2016-10-27
83
问题
设A=
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
2
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(Ⅰ)对增广矩阵(A[*]ξ
1
)作初等行变换,有 [*] 得Ax=0的基础解系(1,一1,2)
T
和Ax=ξ
1
的特解(0,0,1)
T
. 故ξ
2
=(0,0,1)
T
+k(1,一1,2)
T
或ξ
2
=(k,一k,2k+1)
T
,其中k为任意常数. 因为A
2
=[*],对增广矩阵(A
2
[*]ξ
1
)作初等行变换,有 [*] 得A
2
x=0的基础解系(一1,1,0)
T
,(0,0,1)
T
.又A
2
x=ξ
1
有特解([*],0,0)
T
,故 [*] 其中t
1
,t
2
为任意常数. (Ⅱ)因为 [*] 所以ξ
1
,ξ
2
,ξ
3
必线性无关.
解析
其实求ξ
2
和ξ
3
就是分别求方程组Ax=ξ
1
与方程组A
2
x=ξ
1
的通解.
转载请注明原文地址:https://kaotiyun.com/show/DTu4777K
0
考研数学一
相关试题推荐
[*]
用分部积分法求下列不定积分:
某保险公司开展养老保险业务,当存入R。(单位:元)时,t年后可得到养老金R0=R0eat(a>O)(单位:元),另外,银行存款的年利率为r,按连续复利计息,问t年后的养老金现在价值是多少(即养老金的现值是多少)?
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时.证明丨A丨≠0.
行列式为f(x),则方程f(x)=0的根的个数为
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
(2009年试题,21)设二次型f(x1,x2,x3)=a22+a22+(a一1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,a)T,如果齐次线性方程组Ax=0与Bx=0有非零公共解,求
随机试题
关于胃酸分泌有抑制作用的因素是
A.间歇性跛行B.“5P”征C.(指)趾端发黑、干性坏疽、溃疡形成D.搏动性肿块和杂音Buerger病局部缺血期的临床表现
上呼吸道最狭窄处位于()
关于法与道德的关系的论述,下列各项正确的有
[2013专业案例真题下午卷]某220kV变电站有180MVA,220/110/35kV主变压器两台,其35。kV配电装置有8回出线、单母线分段接线,35kV母线上接有若干组电容器,其电抗率为5%,35kV母线并列运行时三相短路容量为1672.2MVA。请
对于女职工和未成年工,国家制定了相关特殊保护规定,以下说法不正确的是()。
甲商品和乙商品的价格和收入按相同比例下降,则预算线()。
设X—N(3,0.22),则P(2X>6.8)=()。
投射,是指主观地将属于自身的一些不良的思绪、动机或情感,赋予到他人或他物身上,推卸责任或把自己的过错归咎于他人,从而得到一种解脱。根据上述定义,下列现象属于投射的是()。
Whatisthemainideaofthestory?Thelittlegirlboughtthenecklace______daysbeforetheChristmasEve.
最新回复
(
0
)