首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
admin
2019-12-26
77
问题
设4维向量组α
1
=(1+a,1,1,1)
T
,α
2
=(2,2+a,2,2)
T
,α
3
=(3,3,3+a,3)
T
,α
4
=(4,4,4,4+a)
T
,问a为何值时,α
1
,α
2
,α
3
,α
4
线性相关?当α
1
,α
2
,α
3
,α
4
线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.
选项
答案
【解法1】 记A=(α
1
,α
2
,α
3
,α
4
),则 [*] 于是当a=0或a=10时,α
1
,α
2
,α
3
,α
4
线性相关. 当a=0时,α
1
为向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
=α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a=-10时,对A施以初等行变换,有 [*] 由于β
2
,β
3
,β
4
为β
1
,β
2
,β
3
,β
4
的一个极大线性无关组,且β
1
=β
2
-β
3
-β
4
,故α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=-α
2
-α
3
-α
4
. 【解法2】 记A=(α
1
,α
2
,α
3
,α
4
),对A施以初等行变换, [*] 当a=0时,r(A)=1,因而α
1
,α
2
,α
3
,α
4
线性相关,此时α
1
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
= 2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a≠0时,再对B施以初等行变换,得 [*] 如果a≠-10,r(C)=4,从而r(A)=4,故α
1
,α
2
,α
3
,α
4
线性无关. 如果a=-10,r(C)=3,从而r(a)=3,故α
1
,α
2
,α
3
,α
4
线性相关,α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=-α
2
-α
3
-α
4
.
解析
转载请注明原文地址:https://kaotiyun.com/show/2GD4777K
0
考研数学三
相关试题推荐
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明(1)αs不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
3阶矩阵,已知r(AB)小于r(A)和r(B),求a,b和r(AB).
已知α1,α2,α3线性无关.α1+tα2,α2+2tα3,α3+4tα1线性相关.则实数t等于_______.
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ1,γ2,γ3),|A|=2,|B|=3,求|A+B|.
行列式的第4行各元素的余子式之和的值为_______.
曲线的斜渐近线为________.
级数的收敛域是________.
确定a,b,使得x一(a+bcosx)sinx当x→0时为阶数尽可能高的无穷小.
设F(u,v)对其变元u,v具有二阶连续偏导数,并设
设f(x)处处可导,则()
随机试题
患者,女,40岁,结婚多年不孕,未采取避孕措施,经期先后不定,经行不畅,量少色暗,经前乳房胀痛,精神抑郁,烦躁易怒,舌暗红,脉弦,拟用
A.俯卧位B.半卧位C.截石位D.1/4侧卧位E.去枕平卧位颅脑手术后麻醉未清醒
职业安全健康管理体系认证证书的有效期为()年。
S公司正在考虑两个互斥的项目。两个项目都需要$150000的初始投资,并且都将运营5年。与项目相关的现金流如下:如果S公司必要收益率为10%,并且使用净现值法,那么应该建议S采取以下哪一种行动组合?
甲公司的记账本位币为人民币。2012年12月5日以每股2美元的价格购入A公司股票10000股作为交易性金融资产,假定当日汇率为1美元=7.6元人民币,款项已经支付。2012年12月31日,当月购入的A公司股票市价变为每股2.1美元,假定当日汇率为1美元=7
商用房的租金收入稳定性很好,可以单纯以租金收入作为还款来源。()
各类导游人员由于其工作性质、工作对象、工作范围和时空条件各不相同,职责重点也有所区别,基本职责也不同。()
( )是公安机关的根本建设,是一项长期的、具有战略意义的大事。
唯物主义
WhatshouldMr.Whitedoifhewishestohavehisbillsenttoanewlocation?
最新回复
(
0
)