首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
admin
2019-12-26
42
问题
设4维向量组α
1
=(1+a,1,1,1)
T
,α
2
=(2,2+a,2,2)
T
,α
3
=(3,3,3+a,3)
T
,α
4
=(4,4,4,4+a)
T
,问a为何值时,α
1
,α
2
,α
3
,α
4
线性相关?当α
1
,α
2
,α
3
,α
4
线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.
选项
答案
【解法1】 记A=(α
1
,α
2
,α
3
,α
4
),则 [*] 于是当a=0或a=10时,α
1
,α
2
,α
3
,α
4
线性相关. 当a=0时,α
1
为向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
=α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a=-10时,对A施以初等行变换,有 [*] 由于β
2
,β
3
,β
4
为β
1
,β
2
,β
3
,β
4
的一个极大线性无关组,且β
1
=β
2
-β
3
-β
4
,故α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=-α
2
-α
3
-α
4
. 【解法2】 记A=(α
1
,α
2
,α
3
,α
4
),对A施以初等行变换, [*] 当a=0时,r(A)=1,因而α
1
,α
2
,α
3
,α
4
线性相关,此时α
1
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
= 2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a≠0时,再对B施以初等行变换,得 [*] 如果a≠-10,r(C)=4,从而r(A)=4,故α
1
,α
2
,α
3
,α
4
线性无关. 如果a=-10,r(C)=3,从而r(a)=3,故α
1
,α
2
,α
3
,α
4
线性相关,α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=-α
2
-α
3
-α
4
.
解析
转载请注明原文地址:https://kaotiyun.com/show/2GD4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αs是一组两两正交的非零向量,证明它们线性无关.
证明n阶行列式=1-a+a2-a3+…+(一a)n.
设随机变量序列X1,…Xn,…相互独立,根据辛钦大数定律,当n→∞时依概率收敛于其数学期望,只要{Xn,n≥1}
设f(x)在[0,+∞)上连续,且满足方程求f(t).
求下列幂级数的收敛域及其和函数:
设连接两点A(0,1)与B(1,0)的一条凸弧,点P(x,y)为凸弧AB上的任意一点.已知凸弧与弦AP之间的面积为x3,求此凸弧的方程.
设半径为R的球面S的球心在定球面x2+y2+z2=a2(a>0)上,问R取何值时,球面S在定球面内的面积最大?
幂级数的收敛半径为________..
设A是3阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为【】
设三阶方阵A与B相似,且|2E+A|=0。已知λ1=l,λ2=一1是方阵B的两个特征值,则|A+2AB|=_________。
随机试题
患者,男性,30岁。1年前下岗,近5个月来觉得邻居都在议论他,常不怀好意地盯着他,有时对着窗外大骂,自语、自笑,整天闭门不出,拨“110”电话要求保护。该病例最可能的诊断是
治疗大失血、大吐泻所致体虚欲脱、脉教欲绝之证,急需益气固脱,宜首选()
纳税人进口应税消费品,应当自海关填发税款缴纳证的次日起( )内缴纳税款。
中央银行调整对商业银行存贷款利率,对整个利率体系中的各项利率具有()作用。
甲公司以人民币为记账本位币,2×17年发生的有关外币交易或事项如下:(1)外币美元资本投入,合同约定的折算汇率与投入美元资本当日的即期汇率不同;(2)支付应付美元货款,支付当日的即期汇率与应付美元货款的账面汇率不同;(3)年末折算汇率与交易发生时或账面汇率
下列现象中能够称之为问题解决的是()。
大气污染是指大气中的污染物或由它转化成的二次污染物的浓度达到了有害程度的现象。造成大气污染的主要物质是()。
茶叶因生长环境的差异而带有不同的味道,一些品茶专家根据多年的经验品一品便知茶叶的产区在哪里。这表明()
下列程序段执行完后,A单元的内容是【 】H。 DATA SEGMENT A DW 0 B DW 0 C DW 230,20
Apunctualpersonisinthehabitofdoingathingatthe【11】timeandisneverlateinkeepinganappointment.Heknowsthathe
最新回复
(
0
)