设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当口为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时,向

admin2017-06-26  39

问题 设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当口为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与(Ⅱ)不等价?

选项

答案由于行列式|α1 α2 α3|=a+1,故当a≠-1时,方程组χ1α1+χ2α2+χ3α3=βi(1,2,3)均有解(且有唯一解),即向量组(Ⅱ)可由(Ⅰ)线性表示;又因行列式|β1 β2 β3|=6≠0,同理可知向量组(Ⅰ)可由(Ⅱ)线性表示.所以,当a≠-1时,向量组(Ⅰ)与(Ⅱ)等价.当a=-1时,由于秩[α1 α2 α3]≠秩[α1 α2 α3[*]β1],故方程组χ1α1+χ2α2+χ3α3=β1无解,即向量β不能由向量组(Ⅰ)线性表示,所以此时向量组(Ⅰ)与(Ⅱ)不等价.

解析
转载请注明原文地址:https://kaotiyun.com/show/DjH4777K
0

最新回复(0)