首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知0<P(B)<1且P[(A1+A2)|B]=P(A1|B)+P(A2|B),则下列选项成立的是( ).
已知0<P(B)<1且P[(A1+A2)|B]=P(A1|B)+P(A2|B),则下列选项成立的是( ).
admin
2019-05-08
53
问题
已知0<P(B)<1且P[(A
1
+A
2
)|B]=P(A
1
|B)+P(A
2
|B),则下列选项成立的是( ).
选项
A、
B、P(A
1
B+A
2
B)=P(A
1
B)+P(A
2
B)
C、P(A
1
+A
2
)=P(A
1
|B)+P(A
2
|B)
D、P(B)=P(A
1
)P(B|A
1
)+P(A
2
)P(B|A
2
)
答案
B
解析
解一 因P[(A
1
+A
2
)|B]=P(A
1
|B)+P(A
2
|B)-P(A
1
A
2
|B),又由题设有
P[(A
1
+A
2
)|B]=P(A
1
|B)+P(A
2
|B),故P(A
1
A
2
|B)=0.因而,P(A
1
A
2
|B)=
P(A
1
A
2
B)/P(B)=0.因P(B)≠0,故P(A
1
A
2
B)=0.于是
P(A
1
B+A
2
B)=P(A
1
B)+P(A
2
B)=P(A
1
A
2
B)=P(A
1
B)+P(A
2
B). 仅(B)入选.
解二 在题设等式两边乘以P(B),得
P[(A
1
+A
2
)|B]P(B)=P(A
1
|B)P(B)+P(A
2
|B)P(B),
由乘法公式知,P[B(A
1
+A
2
)]=P(A
1
B)+P(A
2
B),即
P(A
1
B+A
2
B)=P(A
1
B)+P(A
2
B).因而仅(B)入选.
解三 由P[(A
1
+A
2
)|B]=P(A
1
|B)+P(A
2
|B)及0<P(B)<1,得
即P(A
1
B+A
2
B)=P[(A
1
+A
2
)B]=P(A
1
B)+P(A
2
B).仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/DoJ4777K
0
考研数学三
相关试题推荐
设随机变量X的分布函数为已知P{—1<X<1}=,则a=________,b=________。
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值。试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}。
设f(x)在[a,+∞)上连续,f(x)<0,而f(x)存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f[tx1+(1-t)x2]≤tf(x1)+(1-t)f(x2).证明.
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则∫01y(z)dx=______.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(2)设,求出可由两组向量同时线性表示的向量.
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
微分方程y"一4y=e2x+x的特解形式为().
求微分方程y"+2x(y′)2=0满足初始条件y(0)=1,y′(0)=1的特解.
讨论下列函数的连续性并判断间断点的类型:
随机试题
A.氯霉素B.头孢噻肟钠C.阿莫西林D.四环素E.克拉维酸在光照条件下,顺式异构体向反式异构体转化()
酚醛树脂塑化液第Ⅲ液是
A.局部症状B.后遗症状C.主要症状D.全身症状E.示病症状动物患病时所表现的体温升高、精神沉郁、食欲不振等症状属于
砂的相对密度试验测定最大孔隙比时,用到的仪器设备有()。
下列属于影响气体静电荷产生的主要因素的是()。
下列各项不属于内部控制活动的是()。
数据通信是指通过______和______两种技术的结合来实现信息的传输、交换、存储和处理。
在VisualFoxPro和,字段的数据类型不可以指定为()。
Howmanynewwondersareselected?
RollingStone(1-year)CoverPrice:$117.00Price:$14.95($0.57/issue)&eligibleforFREESuperSaverShippingono
最新回复
(
0
)