首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知0<P(B)<1且P[(A1+A2)|B]=P(A1|B)+P(A2|B),则下列选项成立的是( ).
已知0<P(B)<1且P[(A1+A2)|B]=P(A1|B)+P(A2|B),则下列选项成立的是( ).
admin
2019-05-08
52
问题
已知0<P(B)<1且P[(A
1
+A
2
)|B]=P(A
1
|B)+P(A
2
|B),则下列选项成立的是( ).
选项
A、
B、P(A
1
B+A
2
B)=P(A
1
B)+P(A
2
B)
C、P(A
1
+A
2
)=P(A
1
|B)+P(A
2
|B)
D、P(B)=P(A
1
)P(B|A
1
)+P(A
2
)P(B|A
2
)
答案
B
解析
解一 因P[(A
1
+A
2
)|B]=P(A
1
|B)+P(A
2
|B)-P(A
1
A
2
|B),又由题设有
P[(A
1
+A
2
)|B]=P(A
1
|B)+P(A
2
|B),故P(A
1
A
2
|B)=0.因而,P(A
1
A
2
|B)=
P(A
1
A
2
B)/P(B)=0.因P(B)≠0,故P(A
1
A
2
B)=0.于是
P(A
1
B+A
2
B)=P(A
1
B)+P(A
2
B)=P(A
1
A
2
B)=P(A
1
B)+P(A
2
B). 仅(B)入选.
解二 在题设等式两边乘以P(B),得
P[(A
1
+A
2
)|B]P(B)=P(A
1
|B)P(B)+P(A
2
|B)P(B),
由乘法公式知,P[B(A
1
+A
2
)]=P(A
1
B)+P(A
2
B),即
P(A
1
B+A
2
B)=P(A
1
B)+P(A
2
B).因而仅(B)入选.
解三 由P[(A
1
+A
2
)|B]=P(A
1
|B)+P(A
2
|B)及0<P(B)<1,得
即P(A
1
B+A
2
B)=P[(A
1
+A
2
)B]=P(A
1
B)+P(A
2
B).仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/DoJ4777K
0
考研数学三
相关试题推荐
已知随机变量X1,X2,X3相互独立,且都服从正态分布N(0,σ2),如果随机变量Y=X1X2X3的方差D(Y)=,则σ2=________。
设二维离散型随机变量(X,Y)的概率分布为:(Ⅰ)求P(x=2y);(Ⅱ)求Cov(X—Y,Y)。
已知(X,Y)在以点(0,0),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,对(X,Y)作4次独立重复观察,观察值X+Y不超过1出现的次数为Z,则E(Z2)=________。
假设随机变量X服从[一1,1]上的均匀分布,a是区间[一1,1]上的一个定点,Y为点X到a的距离,当a=________时,随机变量X与Y不相关。
设随机变量X的密度函数为f(x)=(a>0,A为常数),则P{a<X<a+b)的值().
设0≤an<(-1)nan2中,哪个级数一定收敛?
设f(x)在区间(一∞,+∞)上连续,且满足f(x)=∫0xf(x—t)sintdt+x,则在(一∞,+∞)上,当x≠0时,f(x)()
设y=ex为微分方程xy′+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
设且F可微,证明:
设F(x)=∫01(1一t)ln(1+xt)dt(x>一1),求F’(x)(x>一1,x≠0)并讨论F’(x)在(一1,+∞)上的连续性.
随机试题
管道内减阻涂层修补后的检验项目包括哪些?
肝郁发热日久,热邪伤阴,治宜滋养肝肾,疏肝清热,宜选用何方为先
下列疾病中具有尼氏征阳性的是
根据《中华人民共和国草原法》禁止开垦草原的有关规定,已造成()的已垦草原,应当限期治理。
旅行社责任险期为1年,期满应再续1年。()
2012年我国夏粮生产获得了较好收成。全国夏粮总产量达到12995万吨,比2011年增加356万吨,增长2.8%,超过1997年12768万吨的历史最高水平,比10年前增长31.6%。2012年,河北、山西、江苏、安徽、山东、河南、湖北、四川、陕西、甘肃、
我国宪法规定:“中华人民共和国公民有宗教信仰自由。”该规定属于法律规范中的()。(2010年单选4)
当代资本主义发生的变化从根本上说()
A、 B、 C、 D、 D
Bobassuredhisbossthathewould______allhisenergiesindoingthisnewjob.
最新回复
(
0
)