首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f"’(ξ)=2.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f"’(ξ)=2.
admin
2018-05-21
25
问题
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f"’(ξ)=2.
选项
答案
方法一先作一个函数P(x)=ax
3
+bx
2
+cx+d,使得P(0)=f(0)=1,P’(1)=f’(1)=0, P(2)=f(2)=5/3,P(1)=f(1). [*] 令g(x)=f(x)-P(x),则g(x)在[0,2]上三阶可导,且g(0)=g(1)=g(2)=0,所以存在c
1
∈(0,1),c
2
∈(1,2),使得g’(c
1
)=g’(1)=g’(c
2
)=0,又存在d
1
∈(c
1
,1),d
2
∈(1,c
2
)使得g"(d
1
)=g"(d
2
)=0,再由罗尔定理,存在ξ∈(d
1
,d
2
)[*](0,2),使得g"’(ξ)=0,而g"’(x)=f"’(x)-2,所以f"’(ξ)=2. 方法二由泰勒公式,得 [*] 两式相减,得2/3=[*],而f"’(x)∈C[0,2],所以存在ξ∈(0,2),使得f"’(ξ)=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/Dpr4777K
0
考研数学一
相关试题推荐
设总体X服从正态分布N(0,σ2),X,S2分别为容量是n的样本的均值和方差,则可以作出服从自由度为n一1的t分布的随机变量()
设[x]表示不超过x的最大整数,则x=0是f(x)=的()
设f(x)是连续函数.(1)利用定义证明函数F(x)=∫0xf(t)dt可导,且F’(x)=f(x).(2)当f(x)是以2为周期的周期函数时,证明函数G(x)=2∫0xf(t)dt一x∫02f(t)dt也是以2为周期的周期函数.
微分方程yy"+y’2=0满足初始条件y(0)=1,y’(0)=的特解是_________.
曲线y=(x一1)2(x一3)2的拐点个数为()
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy.
设y=y(x)在[0,+∞)可导,在x∈(0,+∞)处的增量满足△y(1+△y)=a,当△x→0时a是△x的等价无穷小,又y(0)=1,则y(x)=()
设总体X的概率密度函数为f(x)=其中λ>0为未知参数,又X1,X2,…,Xn为取自总体X的一组简单随机样本.求常数k.
设g(x)二阶可导,且求fˊ(x),并讨论fˊ(x)在x=0处的连续性
某人打电话忘记对方号码最后一位,因而对最后一位数随机拨号,设拨完某地区规定的位数才完成一次拨号,且假设对方不占线,求到第k次才拨通对方电话的概率.
随机试题
技术测定法是根据生产技术和施工组织条件,对施工过程中各工序采用(),测出各工序的:工时消耗等资料,再对所获得的资料进行科学的分析,制订出人工定额的方法。
下列属于偶然寄生虫的是
工程项目范围定义的依据包括()。
背景某房地产开发公司投资建造一座高档写字楼,钢筋混凝土结构,设计项目已明确,功能布局及工程范围都已确定,业主为缩短建设周期,尽快获得投资收益,施工图设计未完成时就进行了招标,确定了某建筑工程公司为总承包单位。主与承包方鉴订施工合同时,由于设计未完成,工
关于施工成本管理的说法,正确的有()。
财政政策手段除了国家预算以外还有()。
(2017·广东)中国公民和外国公民凡遵守宪法和法律,热爱教育事业,具有良好的思想品德,具备我国《教师法》规定的学历或者经国家教师资格考试合格,有教育教学能力,经认定合格的,可以取得教师资格。()
法律、行政法规对违法行为已经作出行政处罚规定,地方性法规需要作出具体规定的,必须在法律、行政法规规定的给予行政处罚的行为、种类和幅度范围内规定。()
经营性资产是在生产和流通中能够为社会提供商品或劳务的资产。经营性资产的使用单位是具有法人地位的企业,其运营要以追求经济效益为原则。从会计角度看,主要指企业因盈利目的而持有,且实际也具有盈利能力的资产。根据上述定义,下列不属于“经营性资产”的是:
依次填入下面句子中的词语最恰当的一组是( )。①凡具有大专______的人,均可报名。②做错事只能怪自己,不能______别人。
最新回复
(
0
)