首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2019-08-28
60
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=-2为A的一个特征值,其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
-α
1
C、α
1
+2α
2
+3α
3
D、2α
1
-3α
2
答案
D
解析
因为AX=0有非零解,所以r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值,若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到A(α
1
+α
3
)=0α
1
-2α
3
=-2α
3
,故-2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
-α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
-3α
2
为特征值0对应的特征向量,选D.
转载请注明原文地址:https://kaotiyun.com/show/DqJ4777K
0
考研数学三
相关试题推荐
设f(x)在[一2,2]上有连续的导数,且f(0)=0,F(x)=∫-xxf(x+t)dt,证明级数绝对收敛.
设随机变量(X,Y)在圆域χ2+y2≤r2上服从联合均匀分布.(1)求(X,Y)的相关系数ρ;(2)问X和Y是否独立?
已知某企业的总收入函数为R=26x一2x2一4x3.总成本函数为C=8x+x2.其中x表示产品的产量,求利润函数.边际收入函数,边际成本函数,以及企业获得最大利润时的产量和最大利润.
设A=,E为3阶单位矩阵.求满足AB=E的所有矩阵B.
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则()
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.(1)求a,b的值;(2)利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
设3阶矩阵A的特征值为2,-2,1,B=A2-A+E,其中E为3阶单位矩阵,则行列式|B|=_______.
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问:(1)α1能否由α2,α3线性表示?证明你的结论.(2)α4能否由α1,α2,α3线性表示?证明你的结论.
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.讨论向量组β1,β2,…,βs的线性相关性.
随机试题
不属于望舌形的内容的是
“礼治”是维护宗法等级制的工具,其基本原则有
简述搜查与检查的区别。
A.药品生产、经营企业和医疗机构B.药品生产、经营企业C.医疗机构D.药品经营企业E.药品生产企业根据《药品流通监督管理办法》不得采用邮售、互联网交易等方式直接向公众销售处方药的是
下列物质中,存在氢键的是:
关于评标,正确的有()。
与单个债券的久期一样,债券基金的久期越长,所承担的利率风险就越高。( )
人民法院、人民检察院、公安机关、海关和工商行政管理部门依法没收的文物应当报国务院审核。()
已知函数f(x)=x3+ax2+bx一4,且f(x)在x=0有极值点.(1)求b的值;(2)若函数f(x)与x轴有三个交点,则求a的取值范围.
温和的人,却喜欢冒险,这是李安和莫言在创作上的共性。《推手》、《绿巨人》、《少年派的奇幻漂流》,李安总是跳来跳去的,他说自己喜欢不固定的状态,喜欢灰色地带。而莫言因为强烈的个性色彩、具有杀伤力的语言,也被认为是中国少有的敢于冒险的作家。在文学和电影中,冒险
最新回复
(
0
)