首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(ξ>0)内可导,且f’(x)=A,则f’+(0)
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(ξ>0)内可导,且f’(x)=A,则f’+(0)
admin
2021-01-19
95
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a);
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(ξ>0)内可导,且
f’(x)=A,则f’
+
(0)存在,且f’
+
(0)=A。
选项
答案
(Ⅰ)作辅助函数 φ(x)=f(x)-f(a)-[*](x-a), 容易证明φ(x)满足φ(a)=φ(b)。 φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 φ’(x)=f’(x)-[*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以 f(b)-f(a)=f’(ξ)(b-a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,从而由拉格朗日中值定理可得:存在[*]∈(0,x
0
)[*](0,δ),使得 [*] 又由于[*]f’(x)=A,对(*)式两边取x
0
→0
+
时的极限,可得: [*] 故f’
+
(0)存在,且f’
+
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/Du84777K
0
考研数学二
相关试题推荐
如果A=(B+E),且B2=E,则A2=_________。
当x→0时,若有则A=____________,k=___________.
=__________
设exsin2x为某n阶常系数线性齐次微分方程的一个解,则该方程的阶数n至少是__________,该方程为__________.
曲线的过原点的切线是__________.
由曲线y=lnx与两直线y=(e+1)一x及y=0所围成平面图形的面积为________.
设PQ为抛物线y=的弦,它在此抛物线过P点的法线上,求PQ长度的最小值.
A、 B、 C、 D、 A由积分上、下限知,积分区域D=D1∪D2={(x,y)|0≤x≤1,0≤y≤1)∪{(x,y)|lny≤x≤1,1≤y≤e}={(x,y)|0≤y≤ex,0≤x≤1).原式
(2005年试题,16)如图1一3—7所示,C1,C2分别是y=和y=ex的图像,过点(0,1)的曲线C3是一单调增函数的图像.过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly,记C1,C2与lx所围图形的面积为S1(x);C2,C3与lx
令[*]=t,则原式=∫arctan(1+t)d(t2)=t2arctan91+t)-∫t2/[1+(1+t)2]dt=t2arctan(1+t)-∫[1-((2t+2)/(t2+2t+2))]dt=t2arctan(1+t)-t+ln(t2+2t+2)+
随机试题
采用轨模式摊铺机施工时,基层宽度应比混凝土面板每侧宽出()cm。
梦遗与滑精的鉴别点为
最多可容纳2个电子的壳层是
在计算个人所得税时,下列各项中允许税前全额扣除的是()。
近代传统音乐品种中职业化程度最高的是()。
在西欧,19世纪末到20世纪40年代的外语教学,翻译法占统治地位。
2,7,22,67,202,()。
许多杂志有两种版面——免费的电子版和花钱购买的纸质版。杂志电子版的出现使得纸质版的读者迅速流失,而电子版的广告收入有限,杂志经济收益大幅下降。如果不出电子版,杂志的影响力会大大下降。如果对电子版收费,很多读者很可能会转而阅读其他电子杂志。要让读者心甘情愿地
计算数列第n项的函数定义如下:intfa(intn){if(n==1)return1;elsereturn3*fa(n一1)+2;若执行函数调用表达式fa(4)时,返回的函数值为()。
如果要在VBA中打开一个窗体,可使用()对象的OpenForm方法。
最新回复
(
0
)