首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(ξ>0)内可导,且f’(x)=A,则f’+(0)
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(ξ>0)内可导,且f’(x)=A,则f’+(0)
admin
2021-01-19
34
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a);
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(ξ>0)内可导,且
f’(x)=A,则f’
+
(0)存在,且f’
+
(0)=A。
选项
答案
(Ⅰ)作辅助函数 φ(x)=f(x)-f(a)-[*](x-a), 容易证明φ(x)满足φ(a)=φ(b)。 φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 φ’(x)=f’(x)-[*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以 f(b)-f(a)=f’(ξ)(b-a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,从而由拉格朗日中值定理可得:存在[*]∈(0,x
0
)[*](0,δ),使得 [*] 又由于[*]f’(x)=A,对(*)式两边取x
0
→0
+
时的极限,可得: [*] 故f’
+
(0)存在,且f’
+
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/Du84777K
0
考研数学二
相关试题推荐
微分方程y′+ytanχ=cosχ的通解为_______.
设y=y(x)是由方程x2一y+1=ey所确定的隐函数,则=____________。
已知向量组α1=(1,1,1,1),α2=(2,3,4,4),α3=(3,2,1,k)所生成的向量空间的维数是2,则k=__________.
设exsin2x为某n阶常系数线性齐次微分方程的一个解,则该方程的阶数n至少是__________,该方程为__________.
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=______。
设y=(1+sinx)y,则dy|x=y=___________.
若线性方程组有解,则常数a1,a2,a3,a4应满足条件_______.
(x2+xy-x)dxdy=_______,其中D由直线y=z,y=2x及x=1围成.
求柱体x2+y2≤2x被x2+y2+z2=4所截得部分的体积.
设高为12m,水平截面为圆形的桥墩的载荷为p=90t(本身质量另加),材料的密度为2.5t/m3,允许压力为k=2940kN/m2,求桥墩上、下底面积和通过桥墩中心轴的垂直平面与桥墩所得截线的方程.
随机试题
下列药物哪项用法是错误的()(1997年第29题)
副鼻窦瓦氏位摄影,正确的体位角度是
施灸的禁忌为
金融市场可以按照()分为发行市场、二级市场、第三市场和第四市场。
货物的运输价格是由运输成本和利润组成的。()
你单位在一次单位开展电子政务技能竞赛中名次不好,现在还有一次机会参加竞赛,如果成绩再不好会对单位产生很不好的影响。现在同事有以下意见:(1)有同事反映大家思想不积极;(2)有同事认为竞赛是形式主义;(3)有老同事表示软件不会用;(4)有同事反映工作
()的提出标志着在教育起源问题上开始从神话解释转向科学解释。
A.toavoidunpleasantthingsinlifeB.inlookingonthebrightsideoflifeC.lesslikelytocatchcoldD.howonelookson
To:AllStaffItgivesmegreathonortoannouncethatDickBlackhasbeenappointedthenewmanagerofmarketingdepartment,th
ExerciseIsAllYouGetattheGymA)Whenyougotothegym,doyouwashyourhandsbeforeandafterusingtheequipment?Bring
最新回复
(
0
)