首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),Ax=0的通解为X=k(0,-1,3,0)T,则A*X=0的基础解系为( ).
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),Ax=0的通解为X=k(0,-1,3,0)T,则A*X=0的基础解系为( ).
admin
2018-05-17
57
问题
设α
1
,α
2
,α
3
,α
4
为四维非零列向量组,令A=(α
1
,α
2
,α
3
,α
4
),Ax=0的通解为X=k(0,-1,3,0)
T
,则A*X=0的基础解系为( ).
选项
A、α
1
,α
3
B、
2
,α
3
,α
4
C、α
1
,α
2
,α
4
D、α
3
,α
4
答案
C
解析
因为AX=0的基础解系只含一个线性无关的解向量,
所以r(A)=3,于是r(A
*
)=1.
因为A
*
A|=A|E=O,所以α
1
,α
2
,α
3
,α
4
为A*X=0的一组解,
又因为-α
2
+3α
3
=0,所以α
2
,α
3
线性相关,从而α
1
,α
2
,α
4
线性无关,即为A
*
X=0的一个基础解系,应选(C)
转载请注明原文地址:https://kaotiyun.com/show/Duk4777K
0
考研数学二
相关试题推荐
[*]
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
A、 B、 C、 D、 B
设A=(aij)n×n是正交矩阵,将A以行分块为A=(a1,a2,…an)T,则方程组AX=b,b=(b1,…,bn)T的通解为_________.
计算二重积分,其中D是由直线x=-2,y=0,y=2以及曲线所围成的平面区域.
(2009年试题,三(22))设(I)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(2010年试题,2)设y1,y1是一阶非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则().
∫arcsincarccosxdx
设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,要做多少功?(假设在球从水中取出的过程中水面的高度不变.)
设z=f(x,y)=x2arctan=______
随机试题
读装配图应从()入手进行概括了解。
复核死刑案件属于狭义的审判监督。
李某和王某正在磋商物流公司的设立之事。通大公司出卖一批大货车,李某认为物流公司需要,便以自己的名义与通大公司签订了购买合同,通大公司交付了货车,但尚有150万元车款未收到。后物流公司未能设立。关于本案,下列哪一说法是正确的?(2016年卷三25题,单选)
进口货物报关单有若干联,下列报关单中()属于报关单的基本联。
金融期权包括看涨期权和看跌期权两种基本类型。()
甲公司的主营业务为船用燃料油的供应服务。为拓展业务范围,2009年甲公司公开发行股票,所募集资金投入到水上加油项目。公司购建了1艘千吨级加油船,2010年上半年已投入开展水上加油业务,2艘800吨级加油船于2010年6月投入运营,另有1艘800吨级加油船将
Thefollowingparagraphsaregiveninawrongorder.ForQuestions41-45,youarerequiredtoreorganizetheseparagraphsintoa
下列叙述中正确的是()。
InthecontemporaryWesternworld,rapidlychangingstylescatertoadesirefor______andindividualism.
A.continuallyB.wastedC.atthetopD.meansE.causesF.everythingG.putH.collectingI.varyJ.appealK.congre
最新回复
(
0
)