首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),Ax=0的通解为X=k(0,-1,3,0)T,则A*X=0的基础解系为( ).
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),Ax=0的通解为X=k(0,-1,3,0)T,则A*X=0的基础解系为( ).
admin
2018-05-17
86
问题
设α
1
,α
2
,α
3
,α
4
为四维非零列向量组,令A=(α
1
,α
2
,α
3
,α
4
),Ax=0的通解为X=k(0,-1,3,0)
T
,则A*X=0的基础解系为( ).
选项
A、α
1
,α
3
B、
2
,α
3
,α
4
C、α
1
,α
2
,α
4
D、α
3
,α
4
答案
C
解析
因为AX=0的基础解系只含一个线性无关的解向量,
所以r(A)=3,于是r(A
*
)=1.
因为A
*
A|=A|E=O,所以α
1
,α
2
,α
3
,α
4
为A*X=0的一组解,
又因为-α
2
+3α
3
=0,所以α
2
,α
3
线性相关,从而α
1
,α
2
,α
4
线性无关,即为A
*
X=0的一个基础解系,应选(C)
转载请注明原文地址:https://kaotiyun.com/show/Duk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
[*]
-64
设f(x)∈[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1,证明:∫abf(x)φ(x)dx≥f[∫abφ(x)dx].
设y=f(x)是满足微分方程y’’+y’-esinx=0的解,且f’(x0)=0,则f(x)在().
微分方程y’’-y=ex+1的一个特解应具有形式(式中a、b为常数)为().
(2008年试题,22)设n元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
(2009年试题,三(22))设(I)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设当x→0时,有ax3+bx2+cx~∫0ln(1+2x)sintdt,则().
(1)设=8,则a=_______.(2)设χ-(a+bcosχ)sinχ为χ的5阶无穷小,则a_______,b_______.(3)设当χ→0时,f(χ)=ln(1+t)dt~g(χ)=χa(ebχ-1),则a=_______,b=
随机试题
鼓室内有哪些重要结构及作用?
人民检察院在我国的性质是()
《前赤壁赋》中,作者借以抒情说理的主要景物是江水、清风、白露。()
一度房室传导阻滞的诊断标准是()
A.可形成寒性脓肿B.可随伸舌上下移动C.原发性淋巴结的恶性肿瘤D.可分泌5-羟色胺和降钙素E.常继发于面部的炎症病变甲状舌管囊肿
不会造成局部义齿摘戴困难的是
政府直接投资的项目在实施中应特别强调实行()。
对于保修义务的承担和维修的经济责任承担,下述说法正确的是()。
在我国,特别行政区可实行与我国内地不同的社会经济、政治和文化制度。()
Notsolongago,itwasthestuffofnightmares:youpickupthelandlinetelephoneandthere’snodialingtone.Nothing.Theph
最新回复
(
0
)